This document provides a comprehensive overview of LlamaHome's troubleshooting guide, including common issues, diagnostic tools, and integration troubleshooting.
problem: "CUDA out of memory"
solutions:
- "Reduce batch size in config.yaml"
- "Enable gradient checkpointing"
- "Use model quantization"
- "Implement memory efficient attention"
problem: "Loss not converging"
solutions:
- "Check learning rate settings"
- "Verify data preprocessing"
- "Monitor gradient norms"
- "Adjust model architecture"
problem: "Slow inference speed"
solutions:
- "Enable batch processing"
- "Optimize model loading"
- "Use appropriate hardware"
- "Configure proper cache sizes"
problem: "API connection failures"
solutions:
- "Verify network settings"
- "Check authentication"
- "Monitor request timeouts"
- "Validate API endpoints"
# Check CUDA availability
python -c "import torch; print(torch.cuda.is_available())"
# Monitor GPU usage
nvidia-smi -l 1
# Check memory usage
free -h
# Check training logs
tail -f logs/training.log
# Monitor error logs
grep ERROR logs/error.log
from llamahome.api import APIClient
from llamahome.monitoring import APIMonitor
async def diagnose_api():
monitor = APIMonitor()
client = APIClient(monitor=monitor)
try:
await client.health_check()
except Exception as e:
diagnostics = await monitor.get_diagnostics()
print(f"API Issue: {e}")
print(f"Diagnostics: {diagnostics}")
from llamahome.cache import CacheManager
from llamahome.monitoring import CacheMonitor
async def diagnose_cache():
monitor = CacheMonitor()
cache = CacheManager(monitor=monitor)
metrics = await monitor.get_metrics()
if metrics["hit_rate"] < 0.5:
print("Low cache hit rate detected")
print(await monitor.get_cache_recommendations())
- API Guide - API integration help
- Cache Guide - Cache configuration
- Monitoring Guide - Monitoring setup
- Performance Guide - Performance optimization