- Memory Management
- Data Processing
- Training Optimization
- Resource Utilization
- Configuration
- Best Practices
- Monitoring
- Troubleshooting
This document provides a comprehensive guide to optimizing LlamaHome's performance, covering memory management, data processing, training optimizations, resource utilization, configuration, best practices, monitoring, and troubleshooting.
-
Streaming Data Pipeline
class StreamingDataset: """Memory-efficient dataset implementation.""" def __init__(self, buffer_size: int = 1000): self.buffer_size = buffer_size self._buffer = []
Key features:
- Dynamic buffer management
- Memory-aware streaming
- Efficient disk I/O
- Automatic cleanup
-
Batch Processing
class BatchProcessor: """Optimized batch processing.""" async def process_batch(self, batch: Dict[str, torch.Tensor]): if self.config.dynamic_batch_size: batch = await self._adjust_batch_size(batch)
Optimizations:
- Dynamic batch sizing
- Gradient accumulation
- Memory monitoring
- Cache optimization
-
Memory Tracking
class MemoryTracker: """Track and optimize memory usage.""" def update(self): if torch.cuda.is_available(): self.peak_memory = max( self.peak_memory, torch.cuda.memory_allocated() )
Features:
- Real-time monitoring
- Peak usage tracking
- Automatic optimization
- Resource alerts
-
Device Management
class DeviceManager: """Manage compute devices.""" def optimize_device_usage(self): if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.memory.set_per_process_memory_fraction(0.95)
Capabilities:
- GPU memory optimization
- CPU offloading
- Mixed precision
- Device synchronization
-
Efficient Loading
async def load_data(self, path: Path) -> Dataset: return StreamingDataset( path, buffer_size=self.config.stream_buffer_size, memory_limit=self.config.memory_limit )
Features:
- Async loading
- Memory limits
- Streaming support
- Format detection
-
Preprocessing Pipeline
class PreprocessingPipeline: """Efficient data preprocessing.""" def preprocess_batch(self, batch: Dict): return self._apply_transforms( batch, num_workers=self.config.num_workers )
Optimizations:
- Parallel processing
- Memory mapping
- Caching
- Format optimization
-
Tiered Caching
class CacheManager: """Multi-level cache system.""" def __init__(self): self.memory_cache = MemoryCache() self.disk_cache = DiskCache() self.network_cache = NetworkCache()
Levels:
- Memory (fast, limited)
- Disk (medium, local)
- Network (slow, distributed)
-
Cache Policies
class CachePolicy: """Cache management policies.""" def apply_policy(self, cache: Cache): if cache.memory_pressure > 0.8: cache.evict_least_used()
Features:
- LRU eviction
- Size limits
- TTL management
- Priority levels
-
Gradient Management
class GradientOptimizer: """Optimize gradient handling.""" def optimize_gradients(self): if self.config.gradient_checkpointing: self.model.gradient_checkpointing_enable()
Features:
- Checkpointing
- Accumulation
- Clipping
- Scaling
-
Model Optimization
class ModelOptimizer: """Model memory optimization.""" def optimize_model(self): if self.config.memory_efficient_attention: self.model.enable_memory_efficient_attention()
Techniques:
- Attention optimization
- Parameter sharing
- Quantization
- Pruning
-
Compute Optimization
class ComputeOptimizer: """Optimize compute resources.""" def optimize(self): self._optimize_threads() self._optimize_memory() self._optimize_io()
Areas:
- Thread management
- Memory allocation
- I/O scheduling
- Cache utilization
-
Monitoring System
class PerformanceMonitor: """Monitor system performance.""" def monitor(self): self._track_memory() self._track_compute() self._track_io()
Metrics:
- Memory usage
- GPU utilization
- I/O throughput
- Cache hits
memory:
# Memory limits
max_gpu_memory: "90%"
max_cpu_memory: "85%"
# Cache settings
cache_size: "10GB"
cache_ttl: 3600
# Buffer settings
stream_buffer: 1000
prefetch_factor: 2
processing:
# Batch settings
batch_size: "auto"
accumulation_steps: 4
# Optimization
mixed_precision: true
gradient_checkpointing: true
memory_efficient_attention: true
# Resources
num_workers: "auto"
pin_memory: true
-
Memory Management
- Monitor memory usage
- Use streaming for large datasets
- Enable gradient checkpointing
- Implement proper cleanup
-
Data Processing
- Use appropriate batch sizes
- Enable prefetching
- Implement caching
- Optimize I/O operations
-
Resource Utilization
- Monitor GPU usage
- Balance CPU/GPU workload
- Optimize cache usage
- Handle cleanup properly
-
Error Handling
- Monitor OOM errors
- Implement fallbacks
- Log memory issues
- Handle cleanup
class MemoryMonitor:
"""Monitor memory usage."""
def monitor(self):
stats = {
"gpu_used": self._get_gpu_memory(),
"cpu_used": self._get_cpu_memory(),
"cache_size": self._get_cache_size()
}
self._log_stats(stats)
class MetricsCollector:
"""Collect performance metrics."""
def collect(self):
return {
"memory_usage": self._get_memory_metrics(),
"compute_usage": self._get_compute_metrics(),
"io_stats": self._get_io_metrics()
}
training:
single_gpu:
batch_size: 32
training_speed: "X samples/second"
memory_usage: "Y GB"
gpu_utilization: "Z%"
distributed:
gpus: 8
global_batch_size: 256
training_speed: "X samples/second"
memory_per_gpu: "Y GB"
communication_overhead: "X ms"
model:
inference:
batch_1_latency: "X ms"
batch_32_latency: "X ms"
memory_usage: "Y GB"
quality:
validation_accuracy: "X%"
convergence_epochs: "Y"
validation_loss: "Z"
class PerformanceAlertSystem:
"""Monitor and alert on performance metrics."""
def __init__(self):
self.warning_thresholds = {
"memory_usage": 0.90, # 90%
"gpu_utilization_min": 0.70, # 70%
"training_speed_min": "X samples/second",
"validation_loss_max": ("X", "Y") # (value, epochs)
}
self.critical_thresholds = {
"memory_usage": 0.95, # 95%
"training_speed_min": "X/2 samples/second",
"validation_loss_max": ("2X", "Y") # (value, epochs)
}
-
Memory Issues
- Check memory usage
- Adjust batch size
- Enable optimizations
- Clear cache
-
Performance Issues
- Monitor metrics
- Check configuration
- Optimize resources
- Update settings
-
Resource Issues
- Balance workload
- Adjust limits
- Enable monitoring
- Implement cleanup