- Overview
- Configuration
- Metrics Collection
- Visualization
- Alert System
- Best Practices
- Integration Examples
- Related Documentation
LlamaHome's monitoring system provides comprehensive tracking of system performance, resource usage, and model behavior. This document outlines the monitoring configuration, metrics collection, and visualization options.
monitoring:
enabled: true
update_frequency: 10 # seconds
metrics_path: ".metrics"
export_format: "prometheus"
thresholds:
memory:
warning: 0.80 # 80% usage
critical: 0.90 # 90% usage
gpu:
utilization_min: 0.70 # 70% minimum utilization
memory_max: 0.95 # 95% maximum memory usage
training:
loss_plateau_patience: 3
validation_loss_max: 2.0
learning_rate_min: 1e-6
inference:
latency_max: 1000 # ms
timeout: 30 # seconds
batch_queue_max: 100
alerts:
channels:
slack:
webhook_url: ${SLACK_WEBHOOK_URL}
channel: "#llamahome-alerts"
email:
smtp_server: ${SMTP_SERVER}
from_address: "[email protected]"
to_addresses: ["[email protected]"]
class SystemMetricsCollector:
"""Collects system-level metrics."""
async def collect(self) -> Dict[str, float]:
return {
"cpu_usage": self.get_cpu_usage(),
"memory_usage": self.get_memory_usage(),
"gpu_utilization": self.get_gpu_utilization(),
"disk_usage": self.get_disk_usage(),
"network_throughput": self.get_network_throughput()
}
class ModelMetricsCollector:
"""Collects model-specific metrics."""
async def collect(self) -> Dict[str, float]:
return {
"inference_latency": self.get_inference_latency(),
"batch_throughput": self.get_batch_throughput(),
"cache_hit_rate": self.get_cache_hit_rate(),
"token_throughput": self.get_token_throughput()
}
-
System Dashboard
- Resource utilization
- Performance metrics
- Cache statistics
- Network usage
-
Training Dashboard
- Loss curves
- Learning rates
- Validation metrics
- Resource usage
-
Inference Dashboard
- Latency metrics
- Throughput graphs
- Error rates
- Cache performance
alerts:
channels:
slack:
webhook_url: ${SLACK_WEBHOOK_URL}
channel: "#llamahome-alerts"
email:
smtp_server: ${SMTP_SERVER}
from_address: "[email protected]"
to_addresses: ["[email protected]"]
rules:
memory_usage:
condition: "memory_usage > 0.90"
severity: "critical"
channels: ["slack", "email"]
gpu_utilization:
condition: "gpu_utilization < 0.50"
severity: "warning"
channels: ["slack"]
-
Resource Monitoring
- Regular metric collection
- Appropriate threshold settings
- Proactive alert configuration
- Historical data retention
-
Performance Tracking
- Monitor key metrics
- Track trends over time
- Set up alerting
- Regular review cycles
-
Alert Management
- Configure appropriate thresholds
- Use multiple notification channels
- Document alert responses
- Regular alert review
from llamahome.training import TrainingPipeline
from llamahome.monitoring import TrainingMonitor
monitor = TrainingMonitor(config)
pipeline = TrainingPipeline(model, monitor=monitor)
async with monitor:
await pipeline.train()
metrics = await monitor.get_training_metrics()
from llamahome.inference import InferencePipeline
from llamahome.monitoring import InferenceMonitor
monitor = InferenceMonitor(config)
pipeline = InferencePipeline(model, monitor=monitor)
async with monitor:
response = await pipeline.generate("prompt")
latency = await monitor.get_latency_metrics()
from llamahome.monitoring import MetricsCollector
class CustomMetrics(MetricsCollector):
async def collect(self):
return {
"custom_metric": self.calculate(),
"business_metric": self.get_business_value()
}
- Cache Monitoring - Cache-specific monitoring
- Performance Guide - Performance monitoring
- Resource Management - Resource monitoring
- Troubleshooting Guide - Using metrics for troubleshooting