- API Overview
- Quick Start
- API Reference
- Integration Patterns
- Security
- Monitoring
- Error Handling
- Best Practices
- Next Steps
This document provides a comprehensive overview of LlamaHome's API, including core concepts, architecture, key features, quick start, API reference, integration patterns, security, monitoring, error handling, best practices, and next steps.
LlamaHome's API is designed to provide a robust, scalable, and secure interface for interacting with large language models. It supports both synchronous and asynchronous operations, with support for streaming responses and batch processing.
-
Architecture
graph TD A[Client] --> B[API] B --> C[Model]
-
Key Features
- RESTful endpoints
- WebSocket support
- Streaming responses
- Rate limiting
- Authentication
- Monitoring
-
Authentication
from llamahome.client import APIClient client = APIClient( api_key="your_api_key", endpoint="https://api.llamahome.ai" )
-
Simple Request
response = await client.process_prompt( prompt="Summarize this text", model="llama3.3", max_tokens=100 ) print(response.text)
-
Async Stream
async for chunk in client.stream_response( prompt="Generate a story", model="llama3.3" ): print(chunk.text, end="", flush=True)
-
Batch Processing
results = await client.process_batch( prompts=["Query 1", "Query 2", "Query 3"], model="llama3.3", batch_size=3 )
-
Process Prompt
POST /api/v1/process Content-Type: application/json Authorization: Bearer <api_token> { "prompt": "string (required)", "model": "string (optional, default: llama3.3)", "max_tokens": "integer (optional, default: 100)", "temperature": "float (optional, default: 0.7)", "stream": "boolean (optional, default: false)" }
Response:
{ "text": "Generated response", "usage": { "prompt_tokens": 10, "completion_tokens": 50, "total_tokens": 60 }, "model": "llama3.3", "created": "2024-03-15T12:00:00Z" }
-
Stream Response
POST /api/v1/stream Content-Type: application/json Authorization: Bearer <api_token> { "prompt": "string (required)", "model": "string (optional)", "max_tokens": "integer (optional)" }
Response Stream:
{"chunk": "First", "index": 0} {"chunk": "part", "index": 1} {"chunk": "of response", "index": 2}
-
List Models
GET /api/v1/models Authorization: Bearer <api_token>
Response:
{ "models": [ { "id": "llama3.3-7b", "name": "Llama 3.3 7B", "version": "3.3", "parameters": "7B", "context_length": 32768 } ] }
-
Model Information
GET /api/v1/models/{model_id} Authorization: Bearer <api_token>
Response:
{ "id": "llama3.3-7b", "name": "Llama 3.3 7B", "version": "3.3", "parameters": "7B", "context_length": 32768, "capabilities": [ "text-generation", "summarization", "translation" ], "performance": { "tokens_per_second": 100, "memory_required": "8GB" } }
-
Update Settings
POST /api/v1/config Content-Type: application/json Authorization: Bearer <api_token> { "model_settings": { "default_model": "llama3.3", "max_tokens": 2000, "temperature": 0.7 }, "system_settings": { "cache_size": "10GB", "max_requests_per_minute": 60 } }
-
Get Settings
GET /api/v1/config Authorization: Bearer <api_token>
-
Python Client
from llamahome.client import LlamaClient class CustomClient: def __init__(self, api_key: str): self.client = LlamaClient(api_key=api_key) async def process_with_retry( self, prompt: str, max_retries: int = 3 ) -> str: """Process prompt with retry logic.""" for attempt in range(max_retries): try: response = await self.client.process(prompt) return response.text except Exception as e: if attempt == max_retries - 1: raise await asyncio.sleep(2 ** attempt)
-
JavaScript Client
class LlamaClient { constructor(apiKey) { this.apiKey = apiKey; this.baseUrl = 'https://api.llamahome.ai'; } async processPrompt(prompt, options = {}) { const response = await fetch(`${this.baseUrl}/api/v1/process`, { method: 'POST', headers: { 'Authorization': `Bearer ${this.apiKey}`, 'Content-Type': 'application/json' }, body: JSON.stringify({ prompt, ...options }) }); return response.json(); } }
-
FastAPI Server
from fastapi import FastAPI, Depends from llamahome.server import LlamaServer app = FastAPI() llama = LlamaServer() @app.post("/process") async def process_prompt( prompt: str, current_user = Depends(get_current_user) ): return await llama.process(prompt)
-
Express Server
const express = require('express'); const { LlamaServer } = require('llamahome'); const app = express(); const llama = new LlamaServer(); app.post('/process', async (req, res) => { const result = await llama.process(req.body.prompt); res.json(result); });
-
Token Generation
from llamahome.auth import TokenGenerator generator = TokenGenerator(secret_key="your-secret") token = generator.create_token( user_id="user123", expires_in=3600 )
-
Token Validation
from llamahome.auth import TokenValidator validator = TokenValidator(secret_key="your-secret") is_valid = validator.validate_token(token)
-
Basic Rate Limiting
from llamahome.security import RateLimiter limiter = RateLimiter( requests_per_minute=60, burst_size=10 )
-
Advanced Rate Limiting
from llamahome.security import AdvancedRateLimiter limiter = AdvancedRateLimiter( tiers={ "basic": {"rpm": 60, "burst": 10}, "pro": {"rpm": 300, "burst": 50}, "enterprise": {"rpm": 1000, "burst": 100} } )
-
Basic Metrics
from llamahome.monitoring import MetricsCollector collector = MetricsCollector() collector.record_request( endpoint="/api/v1/process", duration=0.123, status=200 )
-
Advanced Metrics
from llamahome.monitoring import AdvancedMetrics metrics = AdvancedMetrics( enable_tracing=True, detailed_logging=True )
-
Response Time Tracking
from llamahome.monitoring import PerformanceMonitor monitor = PerformanceMonitor() with monitor.track_operation("process_prompt"): result = await process_prompt()
-
Resource Usage Tracking
from llamahome.monitoring import ResourceMonitor monitor = ResourceMonitor() monitor.track_resources( interval=60, metrics=["cpu", "memory", "gpu"] )
-
API Errors
class APIError(Exception): def __init__(self, message: str, code: int): self.message = message self.code = code class RateLimitError(APIError): pass class AuthenticationError(APIError): pass
-
Error Responses
{ "error": { "code": "rate_limit_exceeded", "message": "Too many requests", "details": { "retry_after": 60 } } }
-
Retry Logic
from llamahome.error import RetryHandler handler = RetryHandler( max_retries=3, backoff_factor=2 )
-
Circuit Breaker
from llamahome.error import CircuitBreaker breaker = CircuitBreaker( failure_threshold=5, reset_timeout=300 )
-
Request Optimization
# Good: Batch related requests results = await client.batch_process([ "Query 1", "Query 2", "Query 3" ]) # Bad: Multiple individual requests result1 = await client.process("Query 1") result2 = await client.process("Query 2") result3 = await client.process("Query 3")
-
Resource Management
# Good: Use context managers async with client.session() as session: result = await session.process(prompt) # Bad: Manual resource management session = await client.create_session() result = await session.process(prompt) await session.close()
-
Connection Pooling
from llamahome.client import PooledClient client = PooledClient( pool_size=10, max_retries=3 )
-
Response Streaming
async for chunk in client.stream_response( prompt, chunk_size=1000 ): process_chunk(chunk)