Skip to content

EBIO5460Spring2024/class-materials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

class-materials

EBIO5460 Machine Learning for Ecology Spring 2024
Department of Ecology and Evolutionary Biology
University of Colorado, Boulder
Instructor: Dr Brett Melbourne, [email protected]
Pronouns: he, him, his

  • Syllabus
  • Timetable: what topics we covered and when
  • Location: Ramaley N183, Tue/Thu 3:30 - 4:45
  • Office hours: any time via zoom, arrange by email
  • Zoom: 995 5569 4569, as needed and for office hours
  • Text: James et al. 2021 (2023 corrected version; both R and Python editions)
  • Google Drive: anything not open access, audio and zoom recording links, collaborative notes etc
  • Piazza: help, questions, discussion
  • Zotero library: collection of papers

This repository includes lecture slides (pdf), code, and homework instructions. For the most part, where code is concerned you want to view the markdown (.md) files in your web browser from github.com. These markdown files are knitted from the R code. You can also run the R code on your computer from the .R files.

This is the second semester in a graduate-level "data science for ecology" sequence. Semester 1 is here.

Previous iteration: Machine Learning for Ecology 2022.

Awesome papers that started as machine learning projects in 2022 class:

Martin O, Nguyen C, Sarfati R, Chowdhury M, Iuzzolino ML, Nguyen DMT, Layer RM, Peleg O (2024). Embracing firefly flash pattern variability with data-driven species classification. Scientific Reports 14: 3432. https://doi.org/10.1038/s41598-024-53671-3.

Ramoneda J, Stallard-Olivera E, Hoffert M, Winfrey CC, Stadler M, Niño-García JP, Fierer N (2023). Building a genome-based understanding of bacterial pH preferences. Science Advances 9: eadf8998. https://doi.org/10.1126/sciadv.adf8998.

About

EBIO5460 Machine Learning for Ecology Spring 2024

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published