forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Orion model (vllm-project#2539)
Co-authored-by: zhangdacheng <[email protected]> Co-authored-by: Woosuk Kwon <[email protected]>
- Loading branch information
1 parent
e23c08a
commit 2efefa9
Showing
4 changed files
with
327 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,322 @@ | ||
# coding=utf-8 | ||
# Adapted from | ||
# https://huggingface.co/OrionStarAI/Orion-14B-Base/blob/main/modeling_orion.py | ||
# Copyright (c) OrionStar Inc. | ||
# LICENSE: https://huggingface.co/OrionStarAI/Orion-14B-Base/blob/main/LICENSE | ||
"""Inference-only Orion-14B model compatible with HuggingFace weights.""" | ||
from typing import Any, Dict, List, Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import PretrainedConfig | ||
|
||
from vllm.model_executor.input_metadata import InputMetadata | ||
from vllm.model_executor.layers.activation import SiluAndMul | ||
from vllm.model_executor.layers.attention import PagedAttention | ||
from vllm.model_executor.layers.linear import (LinearMethodBase, | ||
MergedColumnParallelLinear, | ||
QKVParallelLinear, | ||
RowParallelLinear) | ||
from vllm.model_executor.layers.rotary_embedding import get_rope | ||
from vllm.model_executor.layers.sampler import Sampler | ||
from vllm.model_executor.layers.vocab_parallel_embedding import ( | ||
VocabParallelEmbedding, ParallelLMHead) | ||
from vllm.model_executor.parallel_utils.parallel_state import ( | ||
get_tensor_model_parallel_world_size) | ||
from vllm.model_executor.sampling_metadata import SamplingMetadata | ||
from vllm.model_executor.weight_utils import (default_weight_loader, | ||
hf_model_weights_iterator) | ||
from vllm.sequence import SamplerOutput | ||
|
||
KVCache = Tuple[torch.Tensor, torch.Tensor] | ||
|
||
|
||
class OrionMLP(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
hidden_size: int, | ||
intermediate_size: int, | ||
hidden_act: str, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
) -> None: | ||
super().__init__() | ||
self.gate_up_proj = MergedColumnParallelLinear( | ||
hidden_size, [intermediate_size] * 2, | ||
bias=False, | ||
linear_method=linear_method) | ||
self.down_proj = RowParallelLinear(intermediate_size, | ||
hidden_size, | ||
bias=False, | ||
linear_method=linear_method) | ||
if hidden_act != "silu": | ||
raise ValueError(f"Unsupported activation: {hidden_act}. " | ||
"Only silu is supported for now.") | ||
self.act_fn = SiluAndMul() | ||
|
||
def forward(self, x): | ||
gate_up, _ = self.gate_up_proj(x) | ||
x = self.act_fn(gate_up) | ||
x, _ = self.down_proj(x) | ||
return x | ||
|
||
|
||
class OrionAttention(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
hidden_size: int, | ||
num_heads: int, | ||
num_kv_heads: int, | ||
rope_theta: float = 10000, | ||
rope_scaling: Optional[Dict[str, Any]] = None, | ||
max_position_embeddings: int = 8192, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
) -> None: | ||
super().__init__() | ||
self.hidden_size = hidden_size | ||
tp_size = get_tensor_model_parallel_world_size() | ||
self.total_num_heads = num_heads | ||
assert self.total_num_heads % tp_size == 0 | ||
self.num_heads = self.total_num_heads // tp_size | ||
self.total_num_kv_heads = num_kv_heads | ||
if self.total_num_kv_heads >= tp_size: | ||
# Number of KV heads is greater than TP size, so we partition | ||
# the KV heads across multiple tensor parallel GPUs. | ||
assert self.total_num_kv_heads % tp_size == 0 | ||
else: | ||
# Number of KV heads is less than TP size, so we replicate | ||
# the KV heads across multiple tensor parallel GPUs. | ||
assert tp_size % self.total_num_kv_heads == 0 | ||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) | ||
self.head_dim = hidden_size // self.total_num_heads | ||
self.q_size = self.num_heads * self.head_dim | ||
self.kv_size = self.num_kv_heads * self.head_dim | ||
self.scaling = self.head_dim**-0.5 | ||
self.rope_theta = rope_theta | ||
self.max_position_embeddings = max_position_embeddings | ||
|
||
self.qkv_proj = QKVParallelLinear( | ||
hidden_size, | ||
self.head_dim, | ||
self.total_num_heads, | ||
self.total_num_kv_heads, | ||
bias=False, | ||
linear_method=linear_method, | ||
) | ||
self.o_proj = RowParallelLinear( | ||
self.total_num_heads * self.head_dim, | ||
hidden_size, | ||
bias=False, | ||
linear_method=linear_method, | ||
) | ||
|
||
self.rotary_emb = get_rope( | ||
self.head_dim, | ||
rotary_dim=self.head_dim, | ||
max_position=max_position_embeddings, | ||
base=rope_theta, | ||
rope_scaling=rope_scaling, | ||
) | ||
self.attn = PagedAttention(self.num_heads, | ||
self.head_dim, | ||
self.scaling, | ||
num_kv_heads=self.num_kv_heads) | ||
|
||
def forward( | ||
self, | ||
positions: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
kv_cache: KVCache, | ||
input_metadata: InputMetadata, | ||
) -> torch.Tensor: | ||
qkv, _ = self.qkv_proj(hidden_states) | ||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) | ||
q, k = self.rotary_emb(positions, q, k) | ||
k_cache, v_cache = kv_cache | ||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) | ||
output, _ = self.o_proj(attn_output) | ||
return output | ||
|
||
|
||
class OrionDecoderLayer(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
) -> None: | ||
super().__init__() | ||
self.hidden_size = config.hidden_size | ||
rope_theta = getattr(config, "rope_theta", 10000) | ||
rope_scaling = getattr(config, "rope_scaling", None) | ||
max_position_embeddings = getattr(config, "max_position_embeddings", | ||
8192) | ||
self.self_attn = OrionAttention( | ||
hidden_size=self.hidden_size, | ||
num_heads=config.num_attention_heads, | ||
num_kv_heads=config.num_key_value_heads, | ||
rope_theta=rope_theta, | ||
rope_scaling=rope_scaling, | ||
max_position_embeddings=max_position_embeddings, | ||
linear_method=linear_method, | ||
) | ||
self.mlp = OrionMLP( | ||
hidden_size=self.hidden_size, | ||
intermediate_size=config.intermediate_size, | ||
hidden_act=config.hidden_act, | ||
linear_method=linear_method, | ||
) | ||
|
||
self.input_layernorm = nn.LayerNorm(config.hidden_size, | ||
eps=config.rms_norm_eps) | ||
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, | ||
eps=config.rms_norm_eps) | ||
|
||
def forward( | ||
self, | ||
positions: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
kv_cache: KVCache, | ||
input_metadata: InputMetadata, | ||
residual: Optional[torch.Tensor], | ||
) -> Tuple[torch.Tensor, torch.Tensor]: | ||
# Self Attention | ||
residual = hidden_states | ||
hidden_states = self.input_layernorm(hidden_states) | ||
hidden_states = self.self_attn( | ||
positions=positions, | ||
hidden_states=hidden_states, | ||
kv_cache=kv_cache, | ||
input_metadata=input_metadata, | ||
) | ||
|
||
hidden_states = residual + hidden_states | ||
|
||
# Fully Connected | ||
residual = hidden_states | ||
hidden_states = self.post_attention_layernorm(hidden_states) | ||
hidden_states = self.mlp(hidden_states) | ||
hidden_states = residual + hidden_states | ||
return hidden_states, None | ||
|
||
|
||
class OrionModel(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
) -> None: | ||
super().__init__() | ||
self.config = config | ||
self.padding_idx = config.pad_token_id | ||
self.vocab_size = config.vocab_size | ||
self.embed_tokens = VocabParallelEmbedding( | ||
config.vocab_size, | ||
config.hidden_size, | ||
) | ||
self.layers = nn.ModuleList([ | ||
OrionDecoderLayer(config, linear_method) | ||
for _ in range(config.num_hidden_layers) | ||
]) | ||
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
kv_caches: List[KVCache], | ||
input_metadata: InputMetadata, | ||
) -> torch.Tensor: | ||
hidden_states = self.embed_tokens(input_ids) | ||
residual = None | ||
for i in range(len(self.layers)): | ||
layer = self.layers[i] | ||
hidden_states, residual = layer( | ||
positions, | ||
hidden_states, | ||
kv_caches[i], | ||
input_metadata, | ||
residual, | ||
) | ||
hidden_states = self.norm(hidden_states) | ||
return hidden_states | ||
|
||
|
||
class OrionForCausalLM(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
) -> None: | ||
super().__init__() | ||
self.config = config | ||
self.linear_method = linear_method | ||
self.model = OrionModel(config, linear_method) | ||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) | ||
self.sampler = Sampler(config.vocab_size) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
kv_caches: List[KVCache], | ||
input_metadata: InputMetadata, | ||
) -> torch.Tensor: | ||
hidden_states = self.model(input_ids, positions, kv_caches, | ||
input_metadata) | ||
return hidden_states | ||
|
||
def sample( | ||
self, | ||
hidden_states: torch.Tensor, | ||
sampling_metadata: SamplingMetadata, | ||
) -> Optional[SamplerOutput]: | ||
next_tokens = self.sampler(self.lm_head.weight, hidden_states, | ||
sampling_metadata) | ||
return next_tokens | ||
|
||
def load_weights(self, | ||
model_name_or_path: str, | ||
cache_dir: Optional[str] = None, | ||
load_format: str = "auto", | ||
revision: Optional[str] = None): | ||
stacked_params_mapping = [ | ||
# (param_name, shard_name, shard_id) | ||
("qkv_proj", "q_proj", "q"), | ||
("qkv_proj", "k_proj", "k"), | ||
("qkv_proj", "v_proj", "v"), | ||
("gate_up_proj", "gate_proj", 0), | ||
("gate_up_proj", "up_proj", 1), | ||
] | ||
params_dict = dict(self.named_parameters()) | ||
for name, loaded_weight in hf_model_weights_iterator( | ||
model_name_or_path, cache_dir, load_format, revision): | ||
if "rotary_emb.inv_freq" in name: | ||
continue | ||
if ("rotary_emb.cos_cached" in name | ||
or "rotary_emb.sin_cached" in name): | ||
# Models trained using ColossalAI may include these tensors in | ||
# the checkpoint. Skip them. | ||
continue | ||
for (param_name, weight_name, shard_id) in stacked_params_mapping: | ||
if weight_name not in name: | ||
continue | ||
name = name.replace(weight_name, param_name) | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader(param, loaded_weight, shard_id) | ||
break | ||
else: | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
param = params_dict[name] | ||
weight_loader = getattr(param, "weight_loader", | ||
default_weight_loader) | ||
weight_loader(param, loaded_weight) |