Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docs/general improvements #1904

Merged
merged 21 commits into from
Aug 4, 2023
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,9 @@ but cannot always guarantee backwards compatibility. Changes that may **break co
- Improvements to `ShapExplainer`:
- Added static covariates support to `ShapeExplainer`. [#1803](https://github.com/unit8co/darts/pull/#1803) by [Anne de Vries](https://github.com/anne-devries) and [Dennis Bader](https://github.com/dennisbader).
- Improved static covariates column naming when applying a `sklearn.preprocessing.OneHotEncoder` with `StaticCovariatesTransformer` [#1863](https://github.com/unit8co/darts/pull/1863) by [Anne de Vries](https://github.com/anne-devries)
- Improvements to documentation [#1904](https://github.com/unit8co/darts/pull/#1904) by [Dennis Bader](https://github.com/dennisbader):
- made model sections in README.md, covariates user guide and forecasting model API Reference more user friendly by adding model links and reorganizing them into model categories.
- added the Dynamic Time Warping (DTW) module and improved its appearance.
- Added `MSTL` (Season-Trend decomposition using LOESS for multiple seasonalities) as a `method` option for `extract_trend_and_seasonality()`. [#1879](https://github.com/unit8co/darts/pull/1879) by [Alex Colpitts](https://github.com/alexcolpitts96)
- Added `RINorm` (Reversible Instance Norm) as a new layer normalization option. [#1121](https://github.com/unit8co/darts/issues/1121) by [Alex Colpitts](https://github.com/alexcolpitts96)
- New forecasting model: `TiDEModel` as proposed in [this paper](https://arxiv.org/abs/2304.08424). An MLP based encoder-decoder model that outperforms many Transformer-based architectures. [#1727](https://github.com/unit8co/darts/pull/1727) by [Alex Colpitts](https://github.com/alexcolpitts96).
Expand Down
72 changes: 41 additions & 31 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -212,37 +212,47 @@ on bringing more models and features.

Model | Univariate | Multivariate | Probabilistic | Multiple series (global) | Past-observed covariates | Future-known covariates | Static covariates | Reference
--- | --- | --- | --- | --- | --- | --- | --- | ---
`ARIMA` | ✅ | | ✅ | | | ✅ | |
`VARIMA` | | ✅ | | | | ✅ | |
`AutoARIMA` | ✅ | | | | | ✅ | |
`StatsForecastAutoARIMA` (faster AutoARIMA) | ✅ | | ✅ | | | ✅ | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
`ExponentialSmoothing` | ✅ | | ✅ | | | | |
`StatsForecastETS` | ✅ | | ✅ | | | ✅ | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
`StatsForecastAutoCES` | ✅ | | | | | | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
`BATS` and `TBATS` | ✅ | | ✅ | | | | | [TBATS paper](https://robjhyndman.com/papers/ComplexSeasonality.pdf)
`Theta` and `FourTheta` | ✅ | | | | | | | [Theta](https://robjhyndman.com/papers/Theta.pdf) & [4 Theta](https://github.com/Mcompetitions/M4-methods/blob/master/4Theta%20method.R)
`StatsForecastAutoTheta` | ✅ | | ✅ | | | | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
`Prophet` (see [install notes](https://github.com/unit8co/darts/blob/master/INSTALL.md#enabling-support-for-facebook-prophet)) | ✅ | | ✅ | | | ✅ | | [Prophet repo](https://github.com/facebook/prophet)
`FFT` (Fast Fourier Transform) | ✅ | | | | | | |
`KalmanForecaster` using the Kalman filter and N4SID for system identification | ✅ | ✅ | ✅ | | | ✅ | | [N4SID paper](https://people.duke.edu/~hpgavin/SystemID/References/VanOverschee-Automatica-1994.pdf)
`Croston` method | ✅ | | | | | | |
`RegressionModel`; generic wrapper around any sklearn regression model | ✅ | ✅ | | ✅ | ✅ | ✅ | ✅ |
`RandomForest` | ✅ | ✅ | | ✅ | ✅ | ✅ | ✅ |
`LinearRegressionModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
`LightGBMModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
`CatBoostModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
`XGBModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
`RNNModel` (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version | ✅ | ✅ | ✅ | ✅ | | ✅ | | [DeepAR paper](https://arxiv.org/abs/1704.04110)
`BlockRNNModel` (incl. LSTM and GRU) | ✅ | ✅ | ✅ | ✅ | ✅ | | |
`NBEATSModel` | ✅ | ✅ | ✅ | ✅ | ✅ | | | [N-BEATS paper](https://arxiv.org/abs/1905.10437)
`NHiTSModel` | ✅ | ✅ | ✅ | ✅ | ✅ | | | [N-HiTS paper](https://arxiv.org/abs/2201.12886)
`TCNModel` | ✅ | ✅ | ✅ | ✅ | ✅ | | | [TCN paper](https://arxiv.org/abs/1803.01271), [DeepTCN paper](https://arxiv.org/abs/1906.04397), [blog post](https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce1b6e97ce4)
`TransformerModel` | ✅ | ✅ | ✅ | ✅ | ✅ | | |
`TFTModel` (Temporal Fusion Transformer) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [TFT paper](https://arxiv.org/pdf/1912.09363.pdf), [PyTorch Forecasting](https://pytorch-forecasting.readthedocs.io/en/latest/models.html)
`DLinearModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [DLinear paper](https://arxiv.org/pdf/2205.13504.pdf)
`NLinearModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [NLinear paper](https://arxiv.org/pdf/2205.13504.pdf)
`TiDEModel` | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [TiDE paper](https://arxiv.org/pdf/2304.08424.pdf)
Naive Baselines | ✅ | ✅ | | | | | |
**Baseline Models** ([LocalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#local-forecasting-models-lfms))| | | | | | | |
[NaiveMean](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMean) | ✅ | ✅ | | | | | |
[NaiveSeasonal](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveSeasonal) | ✅ | ✅ | | | | | |
[NaiveDrift](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveDrift) | ✅ | ✅ | | | | | |
[NaiveMovingAverage](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMovingAverage) | ✅ | ✅ | | | | | |
**Statistical / Simpler Models** ([LocalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#local-forecasting-models-lfms)) | | | | | | | |
[ARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.arima.html#darts.models.forecasting.arima.ARIMA) | ✅ | | ✅ | | | ✅ | |
[VARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.varima.html#darts.models.forecasting.varima.VARIMA) | | ✅ | | | | ✅ | |
[AutoARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.auto_arima.html#darts.models.forecasting.auto_arima.AutoARIMA) | ✅ | | | | | ✅ | |
[StatsForecastAutoArima](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_arima.html#darts.models.forecasting.sf_auto_arima.StatsForecastAutoARIMA) (faster AutoARIMA) | ✅ | | ✅ | | | ✅ | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
[ExponentialSmoothing](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.exponential_smoothing.html#darts.models.forecasting.exponential_smoothing.ExponentialSmoothing) | ✅ | | ✅ | | | | |
[StatsforecastAutoETS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_ets.html#darts.models.forecasting.sf_auto_ets.StatsForecastAutoETS) | ✅ | | ✅ | | | ✅ | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
[StatsforecastAutoCES](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_ces.html#darts.models.forecasting.sf_auto_ces.StatsForecastAutoCES) | ✅ | | | | | | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
[BATS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tbats_model.html#darts.models.forecasting.tbats_model.BATS) and [TBATS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tbats_model.html#darts.models.forecasting.tbats_model.TBATS) | ✅ | | ✅ | | | | | [TBATS paper](https://robjhyndman.com/papers/ComplexSeasonality.pdf)
[Theta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.theta.html#darts.models.forecasting.theta.Theta) and [FourTheta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.theta.html#darts.models.forecasting.theta.FourTheta) | ✅ | | | | | | | [Theta](https://robjhyndman.com/papers/Theta.pdf) & [4 Theta](https://github.com/Mcompetitions/M4-methods/blob/master/4Theta%20method.R)
[StatsForecastAutoTheta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_theta.html#darts.models.forecasting.sf_auto_theta.StatsForecastAutoTheta) | ✅ | | ✅ | | | | | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast)
[Prophet](file:///Users/dennisbader/projects/unit8/darts/docs/build/html/generated_api/darts.models.forecasting.prophet_model.html#darts.models.forecasting.prophet_model.Prophet) (see [install notes](https://github.com/unit8co/darts/blob/master/INSTALL.md#enabling-support-for-facebook-prophet)) | ✅ | | ✅ | | | ✅ | | [Prophet repo](https://github.com/facebook/prophet)
[FFT](file:///Users/dennisbader/projects/unit8/darts/docs/build/html/generated_api/darts.models.forecasting.fft.html#darts.models.forecasting.fft.FFT) (Fast Fourier Transform) | ✅ | | | | | | |
[KalmanForecaster](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.kalman_forecaster.html#darts.models.forecasting.kalman_forecaster.KalmanForecaster) using the Kalman filter and N4SID for system identification | ✅ | ✅ | ✅ | | | ✅ | | [N4SID paper](https://people.duke.edu/~hpgavin/SystemID/References/VanOverschee-Automatica-1994.pdf)
[Croston](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.croston.html#darts.models.forecasting.croston.Croston) method | ✅ | | | | | | |
**Regression Models** ([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms))| | | | | | | |
[RegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_model.html#darts.models.forecasting.regression_model.RegressionModel): generic wrapper around any sklearn regression model | ✅ | ✅ | | ✅ | ✅ | ✅ | ✅ |
[LinearRegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
[RandomForest](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html#darts.models.forecasting.random_forest.RandomForest) | ✅ | ✅ | | ✅ | ✅ | ✅ | ✅ |
[LightGBMModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.lgbm.html#darts.models.forecasting.lgbm.LightGBMModel), | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
[XGBModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.xgboost.html#darts.models.forecasting.xgboost.XGBModel)| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
[CatBoostModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.catboost_model.html#darts.models.forecasting.catboost_model.CatBoostModel) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
**PyTorch (Lightning)-based Models** ([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms))| | | | | | | |
[RNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html#darts.models.forecasting.rnn_model.RNNModel) (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version | ✅ | ✅ | ✅ | ✅ | | ✅ | | [DeepAR paper](https://arxiv.org/abs/1704.04110)
[BlockRNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.block_rnn_model.html#darts.models.forecasting.block_rnn_model.BlockRNNModel) (incl. LSTM and GRU) | ✅ | ✅ | ✅ | ✅ | ✅ | | |
[NBEATSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nbeats.html#darts.models.forecasting.nbeats.NBEATSModel) | ✅ | ✅ | ✅ | ✅ | ✅ | | | [N-BEATS paper](https://arxiv.org/abs/1905.10437)
[NHiTSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html#darts.models.forecasting.nhits.NHiTSModel) | ✅ | ✅ | ✅ | ✅ | ✅ | | | [N-HiTS paper](https://arxiv.org/abs/2201.12886)
[TCNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html#darts.models.forecasting.tcn_model.TCNModel) | ✅ | ✅ | ✅ | ✅ | ✅ | | | [TCN paper](https://arxiv.org/abs/1803.01271), [DeepTCN paper](https://arxiv.org/abs/1906.04397), [blog post](https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce1b6e97ce4)
[TransformerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.transformer_model.html#darts.models.forecasting.transformer_model.TransformerModel) | ✅ | ✅ | ✅ | ✅ | ✅ | | |
[TFTModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html#darts.models.forecasting.tft_model.TFTModel) (Temporal Fusion Transformer) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [TFT paper](https://arxiv.org/pdf/1912.09363.pdf), [PyTorch Forecasting](https://pytorch-forecasting.readthedocs.io/en/latest/models.html)
[DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [DLinear paper](https://arxiv.org/pdf/2205.13504.pdf)
[NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [NLinear paper](https://arxiv.org/pdf/2205.13504.pdf)
[TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | [TiDE paper](https://arxiv.org/pdf/2304.08424.pdf)
**Ensemble Models** ([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)): Model support is dependent on ensembled forecasting models and the ensemble model itself | | | | | | | |
[NaiveEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveEnsembleModel) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
[RegressionEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_ensemble_model.html#darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |


## Community & Contact
Expand Down
5 changes: 5 additions & 0 deletions darts/dataprocessing/dtw/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
"""
Dynamic Time Warping (DTW)
--------------------------
"""

from .cost_matrix import CostMatrix
from .dtw import DTWAlignment, dtw
from .window import CRWindow, Itakura, NoWindow, SakoeChiba, Window
Loading