Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added python implementation for GeLU #1154

Merged
merged 6 commits into from
Feb 26, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions tensorflow_addons/activations/gelu.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
# ==============================================================================

import tensorflow as tf
import math

from tensorflow_addons.utils import types
from tensorflow_addons.utils.resource_loader import LazySO
Expand Down Expand Up @@ -49,3 +50,13 @@ def _gelu_grad(op, grad):
return _activation_so.ops.addons_gelu_grad(
grad, op.inputs[0], op.get_attr("approximate")
)


def _gelu_py(x: types.TensorLike, approximate: bool = True) -> tf.Tensor:
x = tf.convert_to_tensor(x)
if approximate:
pi = tf.cast(math.pi, x.dtype)
coeff = tf.cast(0.044715, x.dtype)
abhichou4 marked this conversation as resolved.
Show resolved Hide resolved
return 0.5 * x * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3))))
else:
return 0.5 * x * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype)))
20 changes: 20 additions & 0 deletions tensorflow_addons/activations/gelu_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
import numpy as np
import tensorflow as tf
from tensorflow_addons.activations import gelu
from tensorflow_addons.activations.gelu import _gelu_py
from tensorflow_addons.utils import test_utils


Expand Down Expand Up @@ -51,6 +52,25 @@ def test_theoretical_gradients(self, dtype):
)
self.assertAllCloseAccordingToType(theoretical, numerical, atol=1e-4)

@parameterized.named_parameters(("float32", np.float32), ("float64", np.float64))
def test_same_as_py_func(self, dtype):
np.random.seed(100)
for _ in range(20):
self.verify_funcs_are_equivalent(dtype)

def verify_funcs_are_equivalent(self, dtype):
x_np = np.random.uniform(-10, 10, size=(4, 4)).astype(dtype)
x = tf.convert_to_tensor(x_np)
for approximate in [True, False]:
with tf.GradientTape(persistent=True) as t:
t.watch(x)
y_native = gelu(x, approximate=approximate)
y_py = _gelu_py(x, approximate=approximate)
self.assertAllCloseAccordingToType(y_native, y_py, atol=1e-4)
grad_native = t.gradient(y_native, x)
grad_py = t.gradient(y_py, x)
self.assertAllCloseAccordingToType(grad_native, grad_py, atol=1e-4)


if __name__ == "__main__":
tf.test.main()