Skip to content

Releases: qdrant/qdrant-client

v1.6.2

16 Oct 17:27
Compare
Choose a tag to compare

Changelog

  • Missing fix form previous release: #338 - add missing parameters in recommend batch API

v1.6.1

16 Oct 17:11
Compare
Choose a tag to compare

Changelog

Features

  • Proper support for Async client - #319

    • Now all methods of regular qdrant client are available in async version.
    • All method names, parameters and return types are preserved.
    • Both gRPC and REST version are available.
  • Improvements of fastembed integration:

Fixes

  • #337 - fix: convert score to float in local mode for pydantic

Async Qdrant client usage example:

from qdrant_client import AsyncQdrantClient, models
import numpy as np
import asyncio

async def main():
    client = AsyncQdrantClient(url="http://localhost:6333")

    res = await client.search(
        collection_name="my_collection",
        query_vector=np.random.rand(10).tolist(),  # type: ignore
        limit=10,
    )

    print(res)

asyncio.run(main())

v1.6.0

09 Oct 11:44
7204c31
Compare
Choose a tag to compare

Changelog

Imptovements

Bug fixes

  • #330 - fix usage of write ordering parameter
  • #332 - wait param to the upload records method
  • #317 - fix for init_from parameter

v1.5.0

07 Sep 10:50
c1e640f
Compare
Choose a tag to compare

Changelog

Features

  • #280, 6f8c517 - Compatibility updates for Qdrant v1.5.x
  • #210 - fastembed integration. Enables lightweight, fast, Python library built for retrieval embedding generation.
  • #243 - Migration tool, allows easy data migration from one instance to another

Bugfix

  • #258 - disable forcing of http2 for cloud connections
  • #268 - fix values count & is_empty & is_null conditions for local mode

Important Notes

  • Python 3.7 is no longer supported

Use fastembed library to easily encode & index documents into qdrant

pip install fastembed qdrant-client
from qdrant_client import QdrantClient

# Initialize the client
client = QdrantClient(":memory:")  # or QdrantClient(path="path/to/db")

# Prepare your documents, metadata, and IDs
docs = ["Qdrant has Langchain integrations", "Qdrant also has Llama Index integrations"]
metadata = [
    {"source": "Langchain-docs"},
    {"source": "Linkedin-docs"},
]
ids = [42, 2]

# Use the new add method
client.add(
    collection_name="demo_collection",
    documents=docs,
    metadata=metadata,
    ids=ids
)

search_result = client.query(
    collection_name="demo_collection",
    query_text="This is a query document"
)
print(search_result)

More in Notebook

v1.3.2

26 Jul 21:56
ba8063b
Compare
Choose a tag to compare

Changelog


Features

  • Pydantic v2 support #214 #224
  • Forbid extra fields in pydantic models #222

Bug fixes

  • Local mode cosine normalization #213
  • Handle Dict[str, np.ndarray] in uploading collection in local mode #183
  • Fix grpc.insecure_connection arguments #216
  • Add missing init_from param in recreate_collection #205

v1.2.0

24 May 12:50
329b415
Compare
Choose a tag to compare

Change log

Features

  • Support for Qdrant v1.2.0 features:
    • Nested filters
    • group-by
    • Optional vectors
    • On-disk vecors

Bug fixes

v1.1.2

07 Apr 14:48
Compare
Choose a tag to compare
  • Minor fix for ids in local mode

v1.1.1

30 Mar 22:20
Compare
Choose a tag to compare

Local Mode

Introduce a new way to run Qdrant from python, no server required!

try-develop-deploy

Python client allows you to run same code in local mode without running Qdrant server.

Simply initialize client like this:

from qdrant_client import QdrantClient

client = QdrantClient(":memory:")
# or
client = QdrantClient(path="path/to/db")  # Persists changes to disk

Local mode is useful for development, prototyping and testing.

  • You can use it to run tests in your CI/CD pipeline.
  • Run it in Colab or Jupyter Notebook, no extra dependencies required. See an example
  • When you need to scale, simply switch to server mode.

How it works?

We just implemented Qdrant API in pure Python.
We covered it with tests extensively to be sure it works the same as the server version.

v1.1.0

17 Mar 19:24
8840f2b
Compare
Choose a tag to compare

Support for Qdrant v1.1.0 features:

  • Quantization
  • Match Any condition
  • Minor improvements

v1.0.2

24 Feb 13:41
Compare
Choose a tag to compare
  • support for Qdrant v1.0.x
  • Minor fixes