Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

implement masked_arith_op to de-duplicate ops code #22182

Merged
merged 5 commits into from
Aug 10, 2018
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 54 additions & 49 deletions pandas/core/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from pandas.core.dtypes.common import (
needs_i8_conversion,
is_datetimelike_v_numeric,
is_period_dtype,
is_integer_dtype, is_categorical_dtype,
is_object_dtype, is_timedelta64_dtype,
is_datetime64_dtype, is_datetime64tz_dtype,
Expand All @@ -41,7 +42,7 @@
from pandas.core.dtypes.generic import (
ABCSeries,
ABCDataFrame, ABCPanel,
ABCIndex,
ABCIndex, ABCIndexClass,
ABCSparseSeries, ABCSparseArray)


Expand Down Expand Up @@ -788,6 +789,55 @@ def mask_cmp_op(x, y, op, allowed_types):
return result


def masked_arith_op(x, y, op):
"""
If the given arithmetic operation fails, attempt it again on
only non-null elements.

Parameters
----------
x : np.ndarray
y : np.ndarray, Series, Index
op : binary operator
"""
xrav = x.ravel() # 2D compat
assert isinstance(x, (np.ndarray, ABCSeries)), type(x)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we provide a more informative error message than just the type of x?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This comment BTW applies to all of the assert statements that you added.

if isinstance(y, (np.ndarray, ABCSeries, ABCIndexClass)):
dtype = find_common_type([x.dtype, y.dtype])
result = np.empty(x.size, dtype=dtype)

# PeriodIndex.ravel() returns int64 dtype, so we have
# to work around that case.
yrav = y if is_period_dtype(y) else y.ravel()
mask = notna(xrav) & notna(yrav)

if yrav.shape != mask.shape:
# FIXME: GH#5284, GH#5035, GH#19448
# Without specifically raising here we get mismatched
# errors in Py3 (TypeError) vs Py2 (ValueError)
# Note: Only (apparently) an issue in DataFrame case
raise ValueError('Cannot broadcast operands together.')

if mask.any():
with np.errstate(all='ignore'):
result[mask] = op(xrav[mask],
com.values_from_object(yrav[mask]))

else:
assert is_scalar(y), type(y)
assert isinstance(x, np.ndarray), type(x)
# mask is only meaningful for x
result = np.empty(x.size, dtype=x.dtype)
mask = notna(xrav)
if mask.any():
with np.errstate(all='ignore'):
result[mask] = op(xrav[mask], y)

result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
result = result.reshape(x.shape) # 2D compat
return result


def invalid_comparison(left, right, op):
"""
If a comparison has mismatched types and is not necessarily meaningful,
Expand Down Expand Up @@ -880,8 +930,7 @@ def _get_method_wrappers(cls):
return arith_flex, comp_flex, arith_special, comp_special, bool_special


def _create_methods(cls, arith_method, comp_method, bool_method,
special=False):
def _create_methods(cls, arith_method, comp_method, bool_method, special):
# creates actual methods based upon arithmetic, comp and bool method
# constructors.

Expand Down Expand Up @@ -1136,18 +1185,7 @@ def na_op(x, y):
try:
result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
except TypeError:
if isinstance(y, (np.ndarray, ABCSeries, pd.Index)):
dtype = find_common_type([x.dtype, y.dtype])
result = np.empty(x.size, dtype=dtype)
mask = notna(x) & notna(y)
result[mask] = op(x[mask], com.values_from_object(y[mask]))
else:
assert isinstance(x, np.ndarray)
result = np.empty(len(x), dtype=x.dtype)
mask = notna(x)
result[mask] = op(x[mask], y)

result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
result = masked_arith_op(x, y, op)

result = missing.fill_zeros(result, x, y, op_name, fill_zeros)
return result
Expand Down Expand Up @@ -1646,40 +1684,7 @@ def na_op(x, y):
try:
result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
except TypeError:
xrav = x.ravel()
if isinstance(y, (np.ndarray, ABCSeries)):
dtype = find_common_type([x.dtype, y.dtype])
result = np.empty(x.size, dtype=dtype)
yrav = y.ravel()
mask = notna(xrav) & notna(yrav)
xrav = xrav[mask]

if yrav.shape != mask.shape:
# FIXME: GH#5284, GH#5035, GH#19448
# Without specifically raising here we get mismatched
# errors in Py3 (TypeError) vs Py2 (ValueError)
raise ValueError('Cannot broadcast operands together.')

yrav = yrav[mask]
if xrav.size:
with np.errstate(all='ignore'):
result[mask] = op(xrav, yrav)

elif isinstance(x, np.ndarray):
# mask is only meaningful for x
result = np.empty(x.size, dtype=x.dtype)
mask = notna(xrav)
xrav = xrav[mask]
if xrav.size:
with np.errstate(all='ignore'):
result[mask] = op(xrav, y)
else:
raise TypeError("cannot perform operation {op} between "
"objects of type {x} and {y}"
.format(op=op_name, x=type(x), y=type(y)))

result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
result = result.reshape(x.shape)
result = masked_arith_op(x, y, op)

result = missing.fill_zeros(result, x, y, op_name, fill_zeros)

Expand Down