Skip to content

Bayesian Nonparametrics

WhiteNoyse edited this page May 10, 2021 · 126 revisions

In the BNP reading group we discuss Statistics and Machine learning papers related to Bayesian nonparametrics.

  • When? Every Tuesday 15:00pm-16:00pm
  • Where? Microsoft Teams, link available upon request

Schedule TT 2021

Organizer: Caroline Lawless and Deborah Sulem

Date Presenter Title Link
20/04/2021 Bo Ning Topological Data Analysis
27/04/2021 Deborah Bayesian Manifold Regression https://arxiv.org/pdf/1305.0617.pdf
04/05/2021 No meeting (MFO workshop)
11/05/2021 Francesca How good is the Bayes posterior in DNN ? https://arxiv.org/abs/2002.02405

Schedule HT 2021

Organizer: Caroline Lawless and Deborah Sulem

Date Presenter Title Link
12/01/2021 Dan, Badr, Cian NeurIPS20 Session 1 https://arxiv.org/pdf/2005.12601.pdf, https://arxiv.org/pdf/1912.08335.pdf, https://papers.nips.cc/paper/2020/hash/db957c626a8cd7a27231adfbf51e20eb-Abstract.html
19/01/2021 Caroline, Pierre, Deborah NeurIPS20 Session 2 https://arxiv.org/abs/2010.11665, https://proceedings.neurips.cc/paper/2020/file/32fcc8cfe1fa4c77b5c58dafd36d1a98-Paper.pdf, https://proceedings.neurips.cc/paper/2020/file/1fd09c5f59a8ff35d499c0ee25a1d47e-Paper.pdf
27/01/2021 Judith Synthetic Data Generators - Sequential and Private https://proceedings.neurips.cc/paper/2020/file/4eff0720836a198b6174eecf02cbfdbf-Paper.pdf
02/02/2021 Francesca Understanding Double Descent https://arxiv.org/abs/2011.03321,
09/02/2021 Jun Convergence complexity of MCMC in high-dimensional settings
16/02/2021 Cian Prediction of Information Cascades https://arxiv.org/abs/2009.02092
23/02/2021 Deborah Berstein von Mises Theorems for functionals of covariance matrices https://projecteuclid.org/euclid.ejs/1468849963
02/03/2021 Judith High dimensional Bayesian clustering https://arxiv.org/pdf/2006.02700.pdf
09/03/2021 Caroline Hierarchical Dirichlet Processes https://www.tandfonline.com/doi/pdf/10.1198/016214506000000302?casa_token=UNYsCGrnNaMAAAAA:dews-aD4HOwqGcJuJn_wi0Mi4-81Nr_9xIbiEIY73E2GXBZMSZaEJGEChJfAeOMfTuCWBZTzUEYIgw
16/03/2021 Daniel Density estimation on an unknown submanifold https://arxiv.org/abs/1910.08477
23/03/2021 Pierre Stochastic Gradient Descent as Approximate Bayesian Inference https://www.jmlr.org/papers/volume18/17-214/17-214.pdf
30/03/2021 Badr Stochastic Gradient Descent algorithms for Variational Inference https://arxiv.org/abs/1401.0118, https://arxiv.org/pdf/1806.04854.pdf

Schedule MT 2020

Organizer: Alisa Kirichenko

Date Presenter Title Link
06/10/2020 Matteo Giordano Consistent Bayesian inference in elliptic nonlinear inverse problems
13/10/2020 Badr A theoretical study of variational inference
20/10/2020 Gregoir Clarte Statistical framework for the reconstruction of the history of sign languages
27/10/2020 Caroline Approximate Bayesian computation with the Wasserstein distance [1]
03/11/2020 CANCELLED Everyone is encouraged to attend Bayes Club instead
10/11/2020 Dan Bayesian inference for spline-based hidden Markov models [1]
17/11/2020 CANCELLED Everyone is encouraged to attend BAYSM instead https://j-isba.github.io/baysmo.html
24/11/2020 Pierre Wolinski Variational Inference for Neural Networks and Bayesian Interpretation of Penalties
01/12/2020 CANCELLED Everyone is encouraged to attend Bayes Club instead
08/12/2020 Rianne de Heide Bayesian Best-Arm Identification [1]
15/12/2020 Francesca Most important statistical ideas of the past 50 years https://arxiv.org/abs/2012.00174

Schedule HT and TT 2020

Organizer: Alisa Kirichenko

Date Presenter Title Link
29/01/2020 Everyone NeurIPS meeting List of articles
05/02/2020 Deborah, Francesca, James NeurIPS meeting II List of articles
12/02/2020 CANCELLED
19/02/2020 Deborah Consistency results under weak assumptions New approaches to Bayesian consistency
A novel approach to Bayesian consistency
26/02/2020 Giuseppe Differential privacy
04/03/2020 Caroline [1] Approximate Bayesian Computation: a nonparametric perspective [1]
01/04/2020 Cian [1] Automated Scalable Bayesian Inference via Hilbert Coresets
[2] Sparse Variational Inference: Bayesian Coresets from Scratch
[1], [2]
08/04/2020 Francois Stopping explosion by penalising transmission to hubs in scale-free spatial random graphs https://arxiv.org/abs/1805.05054
15/04/2020 Judith Convergence rates for variational Bayes https://arxiv.org/pdf/1712.02519
22/04/2020 Dan Applications of the van Trees inequality https://projecteuclid.org/euclid.bj/1186078362
29/04/2020 CANCELLED
06/05/2020 James Generalized Variational Inference and Consistency
13/05/2020 Alice Fast and scalable non-parametric Bayesian inference for Poisson point processes https://arxiv.org/abs/1804.03616
20/05/2020 Francesca Bayesian inference for brain connectomes
27/05/2020 Cian Bootstrapping Exchangeable Random Graphs https://arxiv.org/abs/1711.00813
03/06/2020 Deborah Approximate leave-future-out cross-validation for Bayesian time series models https://arxiv.org/abs/1902.06281
10/06/2020 Samuel Stein Variational Gradient Descent [1],[2]
17/06/2020 Fadhel Wasserstein Learning of Deep Generative Point Process Models [1]
24/06/2020 Jan van Waaij Uncertainty quantification for stochastic block models

Some papers/topics/books

Past

Schedule MT 2019. Organizer: Xenia Miscouridou.

Date Presenter Link Title
26/09/2019 Francois https://arxiv.org/pdf/1712.03889.pdf Statistical Sparsity
3/10/2019 Xenia http://proceedings.mlr.press/v97/mehta19a/mehta19a.pdf Stochastic Blockmodels meet Graph Neural Nets
10/10/2019 Olga http://proceedings.mlr.press/v97/xu19e.html Variational Russian Roulette for Deep Bayesian Nonparametrics
15/10/2019 James http://proceedings.mlr.press/v97/chen19b/chen19b.pdf Stein Point Markov Chain Monte Carlo
10/12/2019 NeurIPS week

Schedule HT and TT 2019. Organizer: Xenia Miscouridou.

Date Presenter Topic Materials
07/02/2019 Xenia Miscouridou, Caron, Teh. NeurIPS 2018 http://papers.nips.cc/paper/7502-modelling-sparsity-heterogeneity-reciprocity-and-community-structure-in-temporal-interaction-data
14/02/2019 Chris C Learning of Weighted Dynamic Multi-layer Networks via Latent Gaussian Processes
21/02/2019 Ben Bloem-Reddy and Teh http://www.stats.ox.ac.uk/~bloemred/assets/papers/prob-symm-nn-bbr-teh.pdf
28/02/2019 Giuseppe ICLR 19 https://openreview.net/pdf?id=BJgRDjR9tQ
07/03/2019 Cedric Archambeau's talk Learning Representations to Accelerate Hyperparameter Tuning
14/03/2019 Fadhel https://arxiv.org/abs/1902.04714?fbclid=IwAR3N8M6oPcVSIr7fOBddlNi2bEqIF3sN0_ZJleMDkigLlpvEchXlUMBQEmg
21/03/2019 Francesca https://arxiv.org/pdf/1803.00816.pdf?fbclid=IwAR2dus1S_-4Qatj6-9q31vWT2F3jVduWTh3oQv0CSmHqHjc18KiFGM0MpHc
28/03/2019 Cian https://arxiv.org/abs/1608.00874?fbclid=IwAR1bIiD8DTIja9pG7JAcgixFTcjUkImhKrGaDDBsrpv21A3QcW9ruSMSGWs
04/04/2019 NO MEETING
11/04/2019 NO MEETING
18/04/2019 NO MEETING
20/06/2019 Jung, Lee, Staton, Yang 2018 https://arxiv.org/abs/1812.06282

Schedule MT 2018. Organizer: Juho Lee.

Date Presenter Topic Materials
21/09/2018 François Krzakal et al. 2013 http://www.pnas.org/content/pnas/early/2013/11/22/1312486110.full.pdf
12/10/2018 Giuseppe Corff et al. 2018 https://arxiv.org/abs/1808.08104
18/10/2018 Juho Rosinski 2001 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.8241&rep=rep1&type=pdf
01/11/2018 Francesca Huggins et al. 2018 https://arxiv.org/abs/1806.10234
08/11/2018 Sonia Caldarelli et al. 2013, Aletti et al. 2017 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.020106, https://projecteuclid.org/euclid.aoap/1513328714
15/11/2018 François Voitalov et al. 2018 https://arxiv.org/abs/1811.02071
22/11/2018 Judith Gao and Lafferty 2017 https://arxiv.org/abs/1710.00862
29/11/2018 Cian Farajtabar et al. 2017 https://arxiv.org/abs/1703.07823
06/12/2018 Fadhel Nonnegative Bayesian nonparametric factor models
13/12/2018 Everyone NeurIPS 2018 https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018
31/12/2018 Juho Arrival time augmentation for CRM

Schedule HT and TT 2018. Organizer: Marco Battiston.

Date Presenter Topic Materials
12/01/2018 Marco Book: Ghosal, Van der Vaart. Chapter 4.5-4.7
19/01/2018 Fadhel Book: Ghosal, Van der Vaart. Chapter 5
26/01/2018 Giuseppe Nguyen 2013 http://dept.stat.lsa.umich.edu/~xuanlong/Papers/Nguyen-AOS-12.pdf
02/02/2018 Judith Szabo, Van Zanten 2017 https://arxiv.org/pdf/1711.03149.pdf
09/02/2018 Clara Book: Ghosal, Van der Vaart. Chapter 6.1
16/02/2018 Xenia Orbanz 2017 https://arxiv.org/pdf/1710.04217.pdf
23/02/2018 Clara Book: Ghosal, Van der Vaart. Chapter 6.2
02/03/2018 Juho Lee, James, Choi 2016. Lee et al. 2017 https://arxiv.org/pdf/1702.08239.pdf http://mlg.postech.ac.kr/~stonecold/papers/nips2016.pdf
09/03/2018 Marco Durante, Dunson, Vogelstein 2017 https://amstat.tandfonline.com/doi/pdf/10.1080/01621459.2016.1219260?needAccess=true
13/04/2018 Francois scale-free networks and degree distributions
27/04/2018 Fadhel Zhang, Gao 2018 https://arxiv.org/pdf/1712.02519.pdf
11/05/2018 Judith Jordan, Lee, Yang 2018 https://arxiv.org/abs/1605.07689
25/05/2018 Juho Bollobas, Janson, Riordan 2006 https://arxiv.org/abs/math/0504589
01/06/2018 Fadhel on the missing mass estimation
22/06/2018 Xenia Chen et al. 2013. Foti et al. 2012 http://proceedings.mlr.press/v28/chen13i.pdf https://arxiv.org/pdf/1211.4753.pdf
06/07/2018 Everyone ICML 2018 https://icml.cc/Conferences/2018/Schedule?type=Poster
27/07/2018 Giuseppe Knapik, Salomond 2014 https://arxiv.org/abs/1407.0335

Schedule MT 2017. Organizer: Marco Battiston.

Date Presenter Topic Materials
15/09/2017 Marco Petrone, Rousseau, Scricciolo https://academic.oup.com/biomet/article/101/2/285/1776208/Bayes-and-empirical-Bayes-do-they-merge
22/09/2017 Fadhel Book: Ghosal, Van der Vaart. Chapter 3, sections 3.1-3.4
29/09/2017 Francois Barndorff-Nielsen, Lunde, Shepard, Veraart http://onlinelibrary.wiley.com/doi/10.1111/sjos.12056/epdf
13/10/2017 Giuseppe Book: Ghosal, Van der Vaart. Chapter 3, sections 3.5-3.7
20/10/2017 Xenia Yurochkin, Nguyen https://arxiv.org/pdf/1610.09034.pdf
27/10/2017 Marco Book: Ghosal, Van der Vaart. Chapter 4, Sections 4.1-4.2
03/11/2017 Konstantina Xu, Xu, Saria https://arxiv.org/pdf/1608.05182.pdf
17/11/2017 Ben Bloem-Reddy, Orbanz https://arxiv.org/pdf/1710.02159.pdf
24/11/2017 Marco Book: Ghosal, Van der Vaart. Chapter 4, Sections 4.3.1-4.3.3
01/12/2017 Chris Carmona, Nieto-Barajas, Canale https://arxiv.org/pdf/1612.00083v2.pdf
08/12/2017 Francois Book: Ghosal, Van der Vaart. Chapter 4.3.4-4.4
15/12/2017 everybody review of some NIPS papers

Earlier meetings.

Date Presenter Topic Materials
14/10/14 Maria T. Broderick, at al 2013. Cluster and Feature Modeling from Combinatorial Stochastic Processes. Statistical Sciences, 2013
21/10/14 (Visitor) Marc Diesenroth
28/10/14 Yee Whye Broderick et al. Sections 3-6
04/11/14 (Visitor) Yutian Chen
11/11/14 François J. Griffin and F. Leisen. Compound random measures and their use in Bayesian nonparametrics. Arxiv preprint, 2014 http://arxiv.org/abs/1410.0611
18/11/14 François and Maria Griffin and Leisen.
25/11/14 Thibaut Beck and Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. http://www.cs.berkeley.edu/~jduchi/papers/BeckTe03.pdf Sections 1-3
02/11/14 Fabian Beck and Teboulle Sections 4-6
20/01/2015 Balaji Stochastic Backpropagation and Approximate Inference in Deep Generative Models. Rezende et al http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c2_rezende14.pdf
27/01/2015 Tamara Y. Yu and X.L. Meng. To center of not to center: that is not the question-an ancillarity-sufficiency interweaving strategy for boosting MCMC efficiency. JCGS, 2011 http://dx.doi.org/10.1198/jcgs.2011.203main
03/02/2015 Maria Y. Yu and X.L. Meng. To center of not to center: that is not the question-an ancillarity-sufficiency interweaving strategy for boosting MCMC efficiency. JCGS, 2011 http://dx.doi.org/10.1198/jcgs.2011.203main
10/02/2015 Frauke, Tamara P. Muller, F. Quintana and G. Rosner. A product partition model with regression on covariates http://amstat.tandfonline.com/doi/pdf/10.1198/jcgs.2011.09066
17/02/2015 Thibaut, Balaji A. Gelman, A. Vehtari, C. Robert, N. Chopin, J.P. Cunningham. Expectation propagation as a way of life http://arxiv.org/pdf/1412.4869v1
24/02/2015 Thibaut, Balaji A. Gelman, A. Vehtari, C. Robert, N. Chopin, J.P. Cunningham. Expectation propagation as a way of life http://arxiv.org/pdf/1412.4869v1
14/04/2015 Maria, Thibaut Green, Latuszynski, Pereyra, Robert, 2015 � Bayesian computation: a perspective on the current state, and sampling backwards and forwards http://arxiv.org/pdf/1502.01148v2
28/04/2015 Maria, Thibaut Green, Latuszynski, Pereyra, Robert, 2015 � Bayesian computation: a perspective on the current state, and sampling backwards and forwards http://arxiv.org/pdf/1502.01148v2
05/05/2015 Levi, Konstantina Introduction to Bayesian nonparametrics http://www.stats.ox.ac.uk/~teh/outbox/jordan-teh.pdf
12/05/2015 Frauke, Tamara Introduction to Bayesian nonparametrics http://www.stats.ox.ac.uk/~teh/outbox/jordan-teh.pdf
26/05/2015 Yee_Whye, Maria Introduction to Bayesian nonparametrics http://www.stats.ox.ac.uk/~teh/outbox/jordan-teh.pdf
02/06/2015 Konstantina, François Broderick et al. Beta processes, stick-breaking, and power laws. Bayesian Analysis, 2012. http://ba.stat.cmu.edu/journal/2012/vol07/issue02/broderick.pdf
09/06/2015 Konstantina, François Gnedin & Pitman. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws. Proba. surveys. http://projecteuclid.org/euclid.ps/1180728778
20/10/2015 Tamara Research talk: Gaussian Processes on survival analysis
27/10/2015 Valerio Research talk
03/11/2015 Seth Flaxman Research talk
10/11/2015 R. Xu external speaker
17/11/2015 Konstantina Palla Research talk
24/11/2015 Dario Spano external speaker
15/09/2016 Organisational Meeting
22/09/2016 François "Edge exchangeable models for network data" by Harry Crane and Walter Dempsey Paper
29/09/2016 No Meeting (Stats Away Day)
06/10/2016 Everyone Bring A Question Session
13/10/2016 Tamara & Giuseppe Asymptotics & Posterior Consistency Notes
20/10/2016 Everyone Bring A Question Session
27/10/2016 Frauke & Marco Stochastic Geometry p. 73-77 in "Poisson Processes" by Kingman; p. 471-475 in "An Introduction to the Theory of Point Processes (Vol II)" by Daley and Vere-Jones
03/11/2016 Everyone Bring A Question Session
10/11/2016 Konstantina & Xenia "Exchangeable Trait Allocations" Paper
17/11/2016 Everyone Bring A Question Session
24/11/2016 Marco "The Class of Random Graphs Arising from Exchangeable Random Measures" by Victor Veitch and Daniel M. Roy Paper
01/12/2016 Everyone Bring A Question Session
08/12/2016 NIPS
19/01/2017 Everyone NIPS Review Papers
26/01/2017 Giuseppe ch. 8 (Tests and metric entropy) and 9 (Rate of contraction) Lecture Notes
02/02/2017 Everyone Bring A Question Session
09/02/2017 Xenia Finite-Dimensional BFRY Priors and Variational Bayesian Inference for Power Law Models Paper
16/02/2017 Everyone Open Session
23/02/2017 Frauke Poisson-Gamma dynamical systems Paper
02/03/2017 Everyone Open Session
09/03/2017 Everyone On the Consistency of Bayes Estimates Paper
16/03/2017 Fadhel Bayesian Poisson Calculus for Latent Feature Modeling via Generalized Indian Buffet Process Priors Paper
23/03/2017 François Bayesian inference on random simple graphs with power law degree distributions; Generating simple random graphs with prescribed degree distribution Lee et al.; Britton et al.