-
Notifications
You must be signed in to change notification settings - Fork 13
Bayesian Nonparametrics
WhiteNoyse edited this page May 10, 2021
·
126 revisions
In the BNP reading group we discuss Statistics and Machine learning papers related to Bayesian nonparametrics.
- When? Every Tuesday 15:00pm-16:00pm
- Where? Microsoft Teams, link available upon request
Organizer: Caroline Lawless and Deborah Sulem
Date | Presenter | Title | Link |
---|---|---|---|
20/04/2021 | Bo Ning | Topological Data Analysis | |
27/04/2021 | Deborah | Bayesian Manifold Regression | https://arxiv.org/pdf/1305.0617.pdf |
04/05/2021 | No meeting (MFO workshop) | ||
11/05/2021 | Francesca | How good is the Bayes posterior in DNN ? | https://arxiv.org/abs/2002.02405 |
Organizer: Caroline Lawless and Deborah Sulem
Organizer: Alisa Kirichenko
Date | Presenter | Title | Link |
---|---|---|---|
06/10/2020 | Matteo Giordano | Consistent Bayesian inference in elliptic nonlinear inverse problems | |
13/10/2020 | Badr | A theoretical study of variational inference | |
20/10/2020 | Gregoir Clarte | Statistical framework for the reconstruction of the history of sign languages | |
27/10/2020 | Caroline | Approximate Bayesian computation with the Wasserstein distance | [1] |
03/11/2020 | CANCELLED | Everyone is encouraged to attend Bayes Club instead | |
10/11/2020 | Dan | Bayesian inference for spline-based hidden Markov models | [1] |
17/11/2020 | CANCELLED | Everyone is encouraged to attend BAYSM instead | https://j-isba.github.io/baysmo.html |
24/11/2020 | Pierre Wolinski | Variational Inference for Neural Networks and Bayesian Interpretation of Penalties | |
01/12/2020 | CANCELLED | Everyone is encouraged to attend Bayes Club instead | |
08/12/2020 | Rianne de Heide | Bayesian Best-Arm Identification | [1] |
15/12/2020 | Francesca | Most important statistical ideas of the past 50 years | https://arxiv.org/abs/2012.00174 |
Organizer: Alisa Kirichenko
Date | Presenter | Title | Link |
---|---|---|---|
29/01/2020 | Everyone | NeurIPS meeting | List of articles |
05/02/2020 | Deborah, Francesca, James | NeurIPS meeting II | List of articles |
12/02/2020 | CANCELLED | ||
19/02/2020 | Deborah | Consistency results under weak assumptions |
New approaches to Bayesian consistency A novel approach to Bayesian consistency |
26/02/2020 | Giuseppe | Differential privacy | |
04/03/2020 | Caroline | [1] Approximate Bayesian Computation: a nonparametric perspective | [1] |
01/04/2020 | Cian | [1] Automated Scalable Bayesian Inference via Hilbert Coresets [2] Sparse Variational Inference: Bayesian Coresets from Scratch |
[1], [2] |
08/04/2020 | Francois | Stopping explosion by penalising transmission to hubs in scale-free spatial random graphs | https://arxiv.org/abs/1805.05054 |
15/04/2020 | Judith | Convergence rates for variational Bayes | https://arxiv.org/pdf/1712.02519 |
22/04/2020 | Dan | Applications of the van Trees inequality | https://projecteuclid.org/euclid.bj/1186078362 |
29/04/2020 | CANCELLED | ||
06/05/2020 | James | Generalized Variational Inference and Consistency | |
13/05/2020 | Alice | Fast and scalable non-parametric Bayesian inference for Poisson point processes | https://arxiv.org/abs/1804.03616 |
20/05/2020 | Francesca | Bayesian inference for brain connectomes | |
27/05/2020 | Cian | Bootstrapping Exchangeable Random Graphs | https://arxiv.org/abs/1711.00813 |
03/06/2020 | Deborah | Approximate leave-future-out cross-validation for Bayesian time series models | https://arxiv.org/abs/1902.06281 |
10/06/2020 | Samuel | Stein Variational Gradient Descent | [1],[2] |
17/06/2020 | Fadhel | Wasserstein Learning of Deep Generative Point Process Models | [1] |
24/06/2020 | Jan van Waaij | Uncertainty quantification for stochastic block models |
- NONPARAMETRIC BAYESIAN MULTI-ARMED BANDITS FOR SINGLE CELL EXPERIMENT DESIGN https://arxiv.org/pdf/1910.05355.pdf
- LIMITS OF SPARSE CONFIGURATION MODELS AND BEYOND: GRAPHEXES AND MULTI-GRAPHEXES https://arxiv.org/pdf/1907.01605.pdf
- Efficient Graph Generation with Graph Recurrent Attention Networks. https://arxiv.org/pdf/1910.00760.pdf
- Emmanuel Abbe and Colin Sandon: Achieving the KS threshold in the general stochastic block model with linearized acyclic belief propagation. https://papers.nips.cc/paper/6365-achieving-the-ks-threshold-in-the-general-stochastic-block-model-with-linearized-acyclic-belief-propagation.pdf
- Aurelien Decelle, Florent Krzakala, Cristopher Moore, Lenka Zdeborová: Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. https://arxiv.org/abs/1109.3041
- Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh: Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks https://arxiv.org/abs/1807.03113
- Chao Gao and Zongmin Ma. Minimax Rates in Network Analysis: Graphon Estimation, Community Detection and Hypothesis Testing. Nov. 2018. https://arxiv.org/pdf/1811.06055.pdf
- Chao Gao, Jiyi Liu, Yuan Yao, Weizhi Zhu. Robust Estimation and Generative Adversarial Nets. Oct. 2018. https://arxiv.org/pdf/1810.02030.pdf
- Barthelmé, S., and Chopin, N. The Poisson transform for unnormalised statistical models. Statistical Computing, 2015. https://arxiv.org/pdf/1406.2839.pdf
- Jim Griffin and Fabrizio Leisen. Modelling and Computation Using NCoRM Mixtures for Density Regression. Bayesian Analysis 2018. https://projecteuclid.org/download/pdfview_1/euclid.ba/1508983454
- S. Xiao et al. Wasserstein Learning of Deep Generative Point Process Models. NIPS 2017. https://papers.nips.cc/paper/6917-wasserstein-learning-of-deep-generative-point-process-models
- M. Farajtabar et al. Fake News Mitigation via Point Process Based Intervention. ICML 2017. https://arxiv.org/pdf/1703.07823.pdf
- V. Veitch, M. Austern, W. Zhou, D. Blei. Empirical Risk Minimization and Stochastic Gradient Descent for Relational Data. June 2018. https://arxiv.org/pdf/1806.10701
- A. Bojchevski et al. NetGAN: Generating Graphs via Random Walks. ICML 2018. https://arxiv.org/pdf/1803.00816.pdf
- K. Bringmann et al. Geometric inhomogeneous random graphs. Theoretical Computer Science. 2018. https://www.sciencedirect.com/science/article/pii/S0304397518305309
- J. Komjathy, Bas Lodewijks. Explosion in weighted Hyperbolic Random Graphs and Geometric Inhomogeneous Random Graphs. 2018. https://arxiv.org/abs/1803.04897
- Remco van der Hofstad, Pim van der Hoorn, Nelly Litvak, Clara Stegehuis. Limit theorems for assortativity and clustering in null models for scale-free networks. June 2018. https://arxiv.org/pdf/1712.08097.pdf
- R. van der Hoftstad. Book on Random Graphs and Complex Networks.
- Last and Penrose. Book on Poisson processes.
- Kallenberg. Book on Random measures.
- Resnick. Book on Extreme Values, Regular Variation and Point Processes.
- Ghosal, Van der Vaart. Fundamentals of Nonparametric Bayesian Inference.
- M. Zhou, S. Favaro, S. G. Walker, "Frequency of frequencies distributions and size dependent exchangeable random partitions," to appear in Journal of the American Statistical Association (Theory and Methods).
- Chen et al. Posterior Contraction Rates of Phylogenetic Indian Buffet Processes. Bayesian Analysis.
- Castillo, Orbanz. Uniform estimation of a class of random graph functionals. Arxiv.
- James et al. Scaled subordinators and generalizations of the Indian buffet process. Arxiv.
- James, Orbanz. Independence by Random Scaling. Arxiv.
- Taiji Suzuki. Fast learning rate of deep learning via a kernel perspective.
- Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU activation function
- Borgs et al. Sampling perspectives on sparse exchangeable graphs, https://arxiv.org/abs/1708.03237
- Borgs et al. Sparse exchangeable graphs and their limits via graphon processes, https://arxiv.org/abs/1601.07134
- "Sampling and Estimation for (Sparse) Exchangeable Graphs" by Victor Veitch and Daniel M. Roy https://arxiv.org/abs/1611.00843v1
- Survival Analysis, Neutral to the Right (Doksum 1974?)
- Hierachical Normalized Random Measures by Camerlenghi, Pruenster, Lijoi, Orbanz
- book on regular variation by Resnick
- Determinantal Point Processes and Monte Carlo Integration by Remi
- Gaussian approximation of multivariate Levy processes by Cohen & Rosinsky
- Dependent Random Measures
- Compound random measures and their use in Bayesian non-parametrics
Jim E. Griffin and Fabrizio Leisen
http://onlinelibrary.wiley.com/doi/10.1111/rssb.12176/pdf - Modelling and computation using NCoRM mixtures for density regression
Jim Griffin, Fabrizio Leisen
https://arxiv.org/abs/1608.00874 - Dependent Normalized Random Measures
Changyou Chen, Vinayak Rao, Wray Buntine, Yee Whye Teh
http://www.jmlr.org/proceedings/papers/v28/chen13i.pdf - A unifying representation for a class of dependent random measures
Nicholas J. Foti, Joseph D. Futoma, Daniel N. Rockmore, Sinead Williamson
http://arxiv.org/abs/1211.4753 - Harry Crane on Ewens' Sampling Formula
- Asmussen & Rosinsky, Cohen & Rosinsky on Gaussian tail approximations of Levy processes
- Tree processes (DDT, PYDT, coalescent, Gibbs fragmentation, continuum random trees?)
- Neil Sheppard on Levy processes
- GP inducing points
Schedule MT 2019. Organizer: Xenia Miscouridou.
Date | Presenter | Link | Title |
---|---|---|---|
26/09/2019 | Francois | https://arxiv.org/pdf/1712.03889.pdf | Statistical Sparsity |
3/10/2019 | Xenia | http://proceedings.mlr.press/v97/mehta19a/mehta19a.pdf | Stochastic Blockmodels meet Graph Neural Nets |
10/10/2019 | Olga | http://proceedings.mlr.press/v97/xu19e.html | Variational Russian Roulette for Deep Bayesian Nonparametrics |
15/10/2019 | James | http://proceedings.mlr.press/v97/chen19b/chen19b.pdf | Stein Point Markov Chain Monte Carlo |
10/12/2019 | NeurIPS week |
Schedule HT and TT 2019. Organizer: Xenia Miscouridou.
Schedule MT 2018. Organizer: Juho Lee.
Date | Presenter | Topic | Materials |
---|---|---|---|
21/09/2018 | François | Krzakal et al. 2013 | http://www.pnas.org/content/pnas/early/2013/11/22/1312486110.full.pdf |
12/10/2018 | Giuseppe | Corff et al. 2018 | https://arxiv.org/abs/1808.08104 |
18/10/2018 | Juho | Rosinski 2001 | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.8241&rep=rep1&type=pdf |
01/11/2018 | Francesca | Huggins et al. 2018 | https://arxiv.org/abs/1806.10234 |
08/11/2018 | Sonia | Caldarelli et al. 2013, Aletti et al. 2017 | https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.020106, https://projecteuclid.org/euclid.aoap/1513328714 |
15/11/2018 | François | Voitalov et al. 2018 | https://arxiv.org/abs/1811.02071 |
22/11/2018 | Judith | Gao and Lafferty 2017 | https://arxiv.org/abs/1710.00862 |
29/11/2018 | Cian | Farajtabar et al. 2017 | https://arxiv.org/abs/1703.07823 |
06/12/2018 | Fadhel | Nonnegative Bayesian nonparametric factor models | |
13/12/2018 | Everyone | NeurIPS 2018 | https://papers.nips.cc/book/advances-in-neural-information-processing-systems-31-2018 |
31/12/2018 | Juho | Arrival time augmentation for CRM |
Schedule HT and TT 2018. Organizer: Marco Battiston.
Date | Presenter | Topic | Materials |
---|---|---|---|
12/01/2018 | Marco | Book: Ghosal, Van der Vaart. | Chapter 4.5-4.7 |
19/01/2018 | Fadhel | Book: Ghosal, Van der Vaart. | Chapter 5 |
26/01/2018 | Giuseppe | Nguyen 2013 | http://dept.stat.lsa.umich.edu/~xuanlong/Papers/Nguyen-AOS-12.pdf |
02/02/2018 | Judith | Szabo, Van Zanten 2017 | https://arxiv.org/pdf/1711.03149.pdf |
09/02/2018 | Clara | Book: Ghosal, Van der Vaart. | Chapter 6.1 |
16/02/2018 | Xenia | Orbanz 2017 | https://arxiv.org/pdf/1710.04217.pdf |
23/02/2018 | Clara | Book: Ghosal, Van der Vaart. | Chapter 6.2 |
02/03/2018 | Juho | Lee, James, Choi 2016. Lee et al. 2017 | https://arxiv.org/pdf/1702.08239.pdf http://mlg.postech.ac.kr/~stonecold/papers/nips2016.pdf |
09/03/2018 | Marco | Durante, Dunson, Vogelstein 2017 | https://amstat.tandfonline.com/doi/pdf/10.1080/01621459.2016.1219260?needAccess=true |
13/04/2018 | Francois | scale-free networks and degree distributions | |
27/04/2018 | Fadhel | Zhang, Gao 2018 | https://arxiv.org/pdf/1712.02519.pdf |
11/05/2018 | Judith | Jordan, Lee, Yang 2018 | https://arxiv.org/abs/1605.07689 |
25/05/2018 | Juho | Bollobas, Janson, Riordan 2006 | https://arxiv.org/abs/math/0504589 |
01/06/2018 | Fadhel | on the missing mass estimation | |
22/06/2018 | Xenia | Chen et al. 2013. Foti et al. 2012 | http://proceedings.mlr.press/v28/chen13i.pdf https://arxiv.org/pdf/1211.4753.pdf |
06/07/2018 | Everyone | ICML 2018 | https://icml.cc/Conferences/2018/Schedule?type=Poster |
27/07/2018 | Giuseppe | Knapik, Salomond 2014 | https://arxiv.org/abs/1407.0335 |
Schedule MT 2017. Organizer: Marco Battiston.
Date | Presenter | Topic | Materials |
---|---|---|---|
15/09/2017 | Marco | Petrone, Rousseau, Scricciolo | https://academic.oup.com/biomet/article/101/2/285/1776208/Bayes-and-empirical-Bayes-do-they-merge |
22/09/2017 | Fadhel | Book: Ghosal, Van der Vaart. | Chapter 3, sections 3.1-3.4 |
29/09/2017 | Francois | Barndorff-Nielsen, Lunde, Shepard, Veraart | http://onlinelibrary.wiley.com/doi/10.1111/sjos.12056/epdf |
13/10/2017 | Giuseppe | Book: Ghosal, Van der Vaart. | Chapter 3, sections 3.5-3.7 |
20/10/2017 | Xenia | Yurochkin, Nguyen | https://arxiv.org/pdf/1610.09034.pdf |
27/10/2017 | Marco | Book: Ghosal, Van der Vaart. | Chapter 4, Sections 4.1-4.2 |
03/11/2017 | Konstantina | Xu, Xu, Saria | https://arxiv.org/pdf/1608.05182.pdf |
17/11/2017 | Ben | Bloem-Reddy, Orbanz | https://arxiv.org/pdf/1710.02159.pdf |
24/11/2017 | Marco | Book: Ghosal, Van der Vaart. | Chapter 4, Sections 4.3.1-4.3.3 |
01/12/2017 | Chris | Carmona, Nieto-Barajas, Canale | https://arxiv.org/pdf/1612.00083v2.pdf |
08/12/2017 | Francois | Book: Ghosal, Van der Vaart. | Chapter 4.3.4-4.4 |
15/12/2017 | everybody | review of some NIPS papers |
Earlier meetings.
Date | Presenter | Topic | Materials |
---|---|---|---|
14/10/14 | Maria | T. Broderick, at al 2013. Cluster and Feature Modeling from Combinatorial Stochastic Processes. Statistical Sciences, 2013 | |
21/10/14 | (Visitor) Marc Diesenroth | ||
28/10/14 | Yee Whye | Broderick et al. Sections 3-6 | |
04/11/14 | (Visitor) Yutian Chen | ||
11/11/14 | François | J. Griffin and F. Leisen. Compound random measures and their use in Bayesian nonparametrics. Arxiv preprint, 2014 | http://arxiv.org/abs/1410.0611 |
18/11/14 | François and Maria | Griffin and Leisen. | |
25/11/14 | Thibaut | Beck and Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. | http://www.cs.berkeley.edu/~jduchi/papers/BeckTe03.pdf Sections 1-3 |
02/11/14 | Fabian | Beck and Teboulle Sections 4-6 | |
20/01/2015 | Balaji | Stochastic Backpropagation and Approximate Inference in Deep Generative Models. Rezende et al | http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c2_rezende14.pdf |
27/01/2015 | Tamara | Y. Yu and X.L. Meng. To center of not to center: that is not the question-an ancillarity-sufficiency interweaving strategy for boosting MCMC efficiency. JCGS, 2011 | http://dx.doi.org/10.1198/jcgs.2011.203main |
03/02/2015 | Maria | Y. Yu and X.L. Meng. To center of not to center: that is not the question-an ancillarity-sufficiency interweaving strategy for boosting MCMC efficiency. JCGS, 2011 | http://dx.doi.org/10.1198/jcgs.2011.203main |
10/02/2015 | Frauke, Tamara | P. Muller, F. Quintana and G. Rosner. A product partition model with regression on covariates | http://amstat.tandfonline.com/doi/pdf/10.1198/jcgs.2011.09066 |
17/02/2015 | Thibaut, Balaji | A. Gelman, A. Vehtari, C. Robert, N. Chopin, J.P. Cunningham. Expectation propagation as a way of life | http://arxiv.org/pdf/1412.4869v1 |
24/02/2015 | Thibaut, Balaji | A. Gelman, A. Vehtari, C. Robert, N. Chopin, J.P. Cunningham. Expectation propagation as a way of life | http://arxiv.org/pdf/1412.4869v1 |
14/04/2015 | Maria, Thibaut | Green, Latuszynski, Pereyra, Robert, 2015 � Bayesian computation: a perspective on the current state, and sampling backwards and forwards | http://arxiv.org/pdf/1502.01148v2 |
28/04/2015 | Maria, Thibaut | Green, Latuszynski, Pereyra, Robert, 2015 � Bayesian computation: a perspective on the current state, and sampling backwards and forwards | http://arxiv.org/pdf/1502.01148v2 |
05/05/2015 | Levi, Konstantina | Introduction to Bayesian nonparametrics | http://www.stats.ox.ac.uk/~teh/outbox/jordan-teh.pdf |
12/05/2015 | Frauke, Tamara | Introduction to Bayesian nonparametrics | http://www.stats.ox.ac.uk/~teh/outbox/jordan-teh.pdf |
26/05/2015 | Yee_Whye, Maria | Introduction to Bayesian nonparametrics | http://www.stats.ox.ac.uk/~teh/outbox/jordan-teh.pdf |
02/06/2015 | Konstantina, François | Broderick et al. Beta processes, stick-breaking, and power laws. Bayesian Analysis, 2012. | http://ba.stat.cmu.edu/journal/2012/vol07/issue02/broderick.pdf |
09/06/2015 | Konstantina, François | Gnedin & Pitman. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws. Proba. surveys. | http://projecteuclid.org/euclid.ps/1180728778 |
20/10/2015 | Tamara | Research talk: Gaussian Processes on survival analysis | |
27/10/2015 | Valerio | Research talk | |
03/11/2015 | Seth Flaxman | Research talk | |
10/11/2015 | R. Xu | external speaker | |
17/11/2015 | Konstantina Palla | Research talk | |
24/11/2015 | Dario Spano | external speaker | |
15/09/2016 | Organisational Meeting | ||
22/09/2016 | François | "Edge exchangeable models for network data" by Harry Crane and Walter Dempsey | Paper |
29/09/2016 | No Meeting (Stats Away Day) | ||
06/10/2016 | Everyone | Bring A Question Session | |
13/10/2016 | Tamara & Giuseppe | Asymptotics & Posterior Consistency | Notes |
20/10/2016 | Everyone | Bring A Question Session | |
27/10/2016 | Frauke & Marco | Stochastic Geometry | p. 73-77 in "Poisson Processes" by Kingman; p. 471-475 in "An Introduction to the Theory of Point Processes (Vol II)" by Daley and Vere-Jones |
03/11/2016 | Everyone | Bring A Question Session | |
10/11/2016 | Konstantina & Xenia | "Exchangeable Trait Allocations" | Paper |
17/11/2016 | Everyone | Bring A Question Session | |
24/11/2016 | Marco | "The Class of Random Graphs Arising from Exchangeable Random Measures" by Victor Veitch and Daniel M. Roy | Paper |
01/12/2016 | Everyone | Bring A Question Session | |
08/12/2016 | NIPS | ||
19/01/2017 | Everyone | NIPS Review | Papers |
26/01/2017 | Giuseppe | ch. 8 (Tests and metric entropy) and 9 (Rate of contraction) | Lecture Notes |
02/02/2017 | Everyone | Bring A Question Session | |
09/02/2017 | Xenia | Finite-Dimensional BFRY Priors and Variational Bayesian Inference for Power Law Models | Paper |
16/02/2017 | Everyone | Open Session | |
23/02/2017 | Frauke | Poisson-Gamma dynamical systems | Paper |
02/03/2017 | Everyone | Open Session | |
09/03/2017 | Everyone | On the Consistency of Bayes Estimates | Paper |
16/03/2017 | Fadhel | Bayesian Poisson Calculus for Latent Feature Modeling via Generalized Indian Buffet Process Priors | Paper |
23/03/2017 | François | Bayesian inference on random simple graphs with power law degree distributions; Generating simple random graphs with prescribed degree distribution | Lee et al.; Britton et al. |