Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - chore: backports anticipating nightly-2024-05-19 #13046

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/Morphisms/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -526,7 +526,7 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
let 𝒱 := (Scheme.Pullback.openCoverOfBase 𝒰 f f).bind fun i =>
Scheme.Pullback.openCoverOfLeftRight.{u} (𝒰' i) (𝒰' i) pullback.snd pullback.snd
have i1 : ∀ i, IsAffine (𝒱.obj i) := fun i => by dsimp [𝒱]; infer_instance
refine' (hP.affine_openCover_iff _ _).mpr _
refine' (hP.affine_openCover_iff _ 𝒱).mpr _
rintro ⟨i, j, k⟩
dsimp [𝒱]
convert (affine_cancel_left_isIso hP.1
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/AlgebraicGeometry/Morphisms/QuasiCompact.lean
Original file line number Diff line number Diff line change
Expand Up @@ -136,8 +136,8 @@ theorem isCompact_basicOpen (X : Scheme) {U : Opens X.carrier} (hU : IsCompact (
use V.1 ⊓ X.basicOpen f
have : V.1.1 ⟶ U := by
apply homOfLE; change _ ⊆ (U : Set X.carrier); rw [e]
convert @Set.subset_iUnion₂ _ _ _
(fun (U : X.affineOpens) (_ : U ∈ s) => ↑U) V V.prop using 1
convert Set.subset_iUnion₂ (s := fun (U : X.affineOpens) (_ : U ∈ s) => (U : Set X.carrier))
V V.prop using 1
erw [← X.toLocallyRingedSpace.toRingedSpace.basicOpen_res this.op]
exact IsAffineOpen.basicOpenIsAffine V.1.prop _
haveI : Finite s := hs.to_subtype
Expand Down
5 changes: 1 addition & 4 deletions Mathlib/AlgebraicGeometry/StructureSheaf.lean
Original file line number Diff line number Diff line change
Expand Up @@ -980,10 +980,7 @@ instance IsLocalization.to_basicOpen (r : R) :
#align algebraic_geometry.structure_sheaf.is_localization.to_basic_open AlgebraicGeometry.StructureSheaf.IsLocalization.to_basicOpen

instance to_basicOpen_epi (r : R) : Epi (toOpen R (PrimeSpectrum.basicOpen r)) :=
⟨fun {S} f g h => by
refine' IsLocalization.ringHom_ext (R := R)
(S := (structureSheaf R).val.obj (op <| PrimeSpectrum.basicOpen r)) _ _
exact h⟩
⟨fun _ _ h => IsLocalization.ringHom_ext (Submonoid.powers r) h⟩
#align algebraic_geometry.structure_sheaf.to_basic_open_epi AlgebraicGeometry.StructureSheaf.to_basicOpen_epi

@[elementwise]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -625,7 +625,7 @@ theorem filter_true : (π.filter fun _ => True) = π :=
theorem iUnion_filter_not (π : Prepartition I) (p : Box ι → Prop) :
(π.filter fun J => ¬p J).iUnion = π.iUnion \ (π.filter p).iUnion := by
simp only [Prepartition.iUnion]
convert (@Set.biUnion_diff_biUnion_eq _ (Box ι) π.boxes (π.filter p).boxes (↑) _).symm
convert (@Set.biUnion_diff_biUnion_eq (ι → ℝ) (Box ι) π.boxes (π.filter p).boxes (↑) _).symm
· simp (config := { contextual := true })
· rw [Set.PairwiseDisjoint]
convert π.pairwiseDisjoint
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Analysis/Convex/Segment.lean
Original file line number Diff line number Diff line change
Expand Up @@ -337,12 +337,12 @@ theorem midpoint_mem_segment [Invertible (2 : 𝕜)] (x y : E) : midpoint 𝕜 x
#align midpoint_mem_segment midpoint_mem_segment

theorem mem_segment_sub_add [Invertible (2 : 𝕜)] (x y : E) : x ∈ [x - y -[𝕜] x + y] := by
convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _
convert @midpoint_mem_segment 𝕜 _ _ _ _ _ (x - y) (x + y)
rw [midpoint_sub_add]
#align mem_segment_sub_add mem_segment_sub_add

theorem mem_segment_add_sub [Invertible (2 : 𝕜)] (x y : E) : x ∈ [x + y -[𝕜] x - y] := by
convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _
convert @midpoint_mem_segment 𝕜 _ _ _ _ _ (x + y) (x - y)
rw [midpoint_add_sub]
#align mem_segment_add_sub mem_segment_add_sub

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/InnerProductSpace/l2Space.lean
Original file line number Diff line number Diff line change
Expand Up @@ -475,7 +475,7 @@ protected theorem dense_span (b : HilbertBasis ι 𝕜 E) :

protected theorem hasSum_inner_mul_inner (b : HilbertBasis ι 𝕜 E) (x y : E) :
HasSum (fun i => ⟪x, b i⟫ * ⟪b i, y⟫) ⟪x, y⟫ := by
convert (b.hasSum_repr y).mapL (innerSL _ x) using 1
convert (b.hasSum_repr y).mapL (innerSL 𝕜 x) using 1
ext i
rw [innerSL_apply, b.repr_apply_apply, inner_smul_right, mul_comm]
#align hilbert_basis.has_sum_inner_mul_inner HilbertBasis.hasSum_inner_mul_inner
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
Original file line number Diff line number Diff line change
Expand Up @@ -351,7 +351,7 @@ instance finiteDimensional_vectorSpan_insert (s : AffineSubspace k P)
rcases (s : Set P).eq_empty_or_nonempty with (hs | ⟨p₀, hp₀⟩)
· rw [coe_eq_bot_iff] at hs
rw [hs, bot_coe, span_empty, bot_coe, direction_affineSpan]
convert finiteDimensional_bot _ _ <;> simp
convert finiteDimensional_bot k V <;> simp
· rw [affineSpan_coe, direction_affineSpan_insert hp₀]
infer_instance
#align finite_dimensional_vector_span_insert finiteDimensional_vectorSpan_insert
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/LinearAlgebra/TensorProduct/Vanishing.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ theorem vanishesTrivially_of_sum_tmul_eq_zero (hm : Submodule.span R (Set.range
have exact_ker_subtype : Exact (ker G).subtype G := G.exact_subtype_ker_map
-- Tensor the exact sequence with $N$.
have exact_rTensor_ker_subtype : Exact (rTensor N (ker G).subtype) (rTensor N G) :=
rTensor_exact N exact_ker_subtype G_surjective
rTensor_exact (M := ↥(ker G)) N exact_ker_subtype G_surjective
/- We conclude that $\sum_i e_i \otimes n_i$ is in the range of
$\ker G \otimes N \to R^\iota \otimes N$. -/
have en_mem_range : en ∈ range (rTensor N (ker G).subtype) :=
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/NumberTheory/Padics/PadicVal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -768,8 +768,8 @@ digits of `k` plus the sum of the digits of `n - k` minus the sum of digits of `
theorem sub_one_mul_padicValNat_choose_eq_sub_sum_digits {k n : ℕ} [hp : Fact p.Prime]
(h : k ≤ n) : (p - 1) * padicValNat p (choose n k) =
(p.digits k).sum + (p.digits (n - k)).sum - (p.digits n).sum := by
convert @sub_one_mul_padicValNat_choose_eq_sub_sum_digits' _ _ _ _
all_goals exact Nat.eq_add_of_sub_eq h rfl
convert @sub_one_mul_padicValNat_choose_eq_sub_sum_digits' _ _ _ ‹_›
all_goals omega

end padicValNat

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/RingTheory/Jacobson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -491,7 +491,7 @@ theorem isMaximal_comap_C_of_isMaximal [Nontrivial R] (hP' : ∀ x : R, C x ∈
suffices (⊥ : Ideal (Localization M)).IsMaximal by
rw [← IsLocalization.comap_map_of_isPrime_disjoint M (Localization M) ⊥ bot_prime
(disjoint_iff_inf_le.mpr fun x hx => hM (hx.2 ▸ hx.1))]
refine' ((isMaximal_iff_isMaximal_disjoint (Localization M) _ _).mp (by rwa [map_bot])).1
refine' ((isMaximal_iff_isMaximal_disjoint (Localization M) a _).mp (by rwa [map_bot])).1
let M' : Submonoid (R[X] ⧸ P) := M.map φ
have hM' : (0 : R[X] ⧸ P) ∉ M' := fun ⟨z, hz⟩ =>
hM (quotientMap_injective (_root_.trans hz.2 φ.map_zero.symm) ▸ hz.1)
Expand Down
Loading