Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update dataloader wrappers to have total_batch_size attribute #493

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/internal.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ The main work on your PyTorch `DataLoader` is done by the following function:

[[autodoc]] data_loader.prepare_data_loader

### BatchSamplerShard
### DataLoaderShard

[[autodoc]] data_loader.DataLoaderShard

Expand Down
49 changes: 47 additions & 2 deletions src/accelerate/data_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,22 @@
if is_tpu_available(check_device=False):
import torch_xla.distributed.parallel_loader as xpl

class MpDeviceLoaderWrapper(xpl.MpDeviceLoader):
"""
Wrapper for the xpl.MpDeviceLoader class that knows the total batch size.

**Available attributes:**

- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
number of processes
"""

@property
def total_batch_size(self):
return self._loader.total_batch_size


logger = get_logger(__name__)

# kwargs of the DataLoader in min version 1.4.0.
Expand Down Expand Up @@ -289,6 +305,12 @@ class DataLoaderShard(DataLoader):
A random number generator to keep synchronized across processes.
kwargs:
All other keyword arguments to pass to the regular `DataLoader` initialization.

**Available attributes:**

- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
number of processes
"""

def __init__(self, dataset, device=None, rng_types=None, generator=None, **kwargs):
Expand Down Expand Up @@ -321,6 +343,14 @@ def __iter__(self):
yield current_batch
break

@property
def total_batch_size(self):
return (
self.batch_sampler.batch_size
if self.batch_sampler.split_batches
else (self.batch_sampler.batch_size * self.batch_sampler.num_processes)
)


class DataLoaderDispatcher(DataLoader):
"""
Expand All @@ -334,6 +364,12 @@ class DataLoaderDispatcher(DataLoader):
the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial
`dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch
size of the `dataloader` is a round multiple of `batch_size`.

**Available attributes:**

- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
number of processes
"""

def __init__(self, dataset, split_batches: bool = False, **kwargs):
Expand Down Expand Up @@ -432,6 +468,12 @@ def __len__(self):
else:
return math.ceil(whole_length / self.state.num_processes)

@property
def total_batch_size(self):
return (
self.dataset.batch_size if self.split_batches else (self.dataset.batch_size * self.dataset.num_processes)
)


def prepare_data_loader(
dataloader: DataLoader,
Expand Down Expand Up @@ -577,7 +619,10 @@ def prepare_data_loader(

if dispatch_batches:
dataloader = DataLoaderDispatcher(
new_dataset, split_batches=split_batches, batch_sampler=new_batch_sampler, **kwargs
new_dataset,
split_batches=split_batches,
batch_sampler=new_batch_sampler,
**kwargs,
)
else:
dataloader = DataLoaderShard(
Expand All @@ -590,5 +635,5 @@ def prepare_data_loader(
)

if state.distributed_type == DistributedType.TPU:
return xpl.MpDeviceLoader(dataloader, device)
return MpDeviceLoaderWrapper(dataloader, device)
return dataloader