Skip to content

DQ-DETR: DETR with Dynamic Query for Tiny Object Detection

Notifications You must be signed in to change notification settings

hoiliu-0801/DQ-DETR

Repository files navigation

DQ-DETR: DETR with Dynamic Query for Tiny Object Detection

method

News

[2024/12/06] We released the organized datasets AI-TOD-V1 and AI-TOD-V2.

[2024/7/1]: DQ-DETR has been accepted by ECCV 2024. 🔥🔥🔥

[2024/5/3]: DNTR has been accepted by TGRS 2024. 🔥🔥🔥

Installation -- Compiling CUDA operators

  • The code are built upon the official DINO DETR repository.
conda create -n dqdetr python=3.9 --y
conda activate dqdetr
bash install.sh

Eval models

bash scripts/DQ_eval.sh /path/to/your/dataset /path/to/your/checkpoint

Trained Model

  • Changed the pretrained model path in DQ.sh
CUDA_VISIBLE_DEVICES=5,6,7 bash scripts/DQ.sh /path/to/your/dataset

Our works on Tiny Object Detection

Title Venue Links
DNTR TGRS 2024 Paper | code
DQ-DETR ECCV 2024 Paper | code

Performance

Table 1. Training Set: AI-TOD-V2 trainval set, Testing Set: AI-TOD-V2 test set, 36 epochs, where FRCN, DR denotes Faster R-CNN and DetectoRS, respectively.

Method Backbone mAP AP50 AP75 APvt APt APs APm
Faster R-CNN R-50 11.1 26.3 7.6 0.0 7.2 23.3 33.6
NWD-RKA R-50 23.4 53.5 16.8 8.7 23.8 28.5 36.0
DAB-DETR R-50 22.4 55.6 14.3 9.0 21.7 28.3 38.7
DINO-DETR R-50 25.9 61.3 17.5 12.7 25.3 32.0 39.7
DQ-DETR R-50 30.5 69.2 22.7 15.2 30.9 36.8 45.5

AI-TOD-v1 and AI-TOD-v2 Datasets

  • Step 1: Download the datasets from the below link.
https://drive.google.com/drive/folders/1CowS5BrujefWQxxlmOFfUuLOfUUm8w6U?usp=sharing
  • Step 2: Organize the downloaded files in the following way.
├─ Dataset
│   └─ aitod
│       ├─ annotations
│       ├─ images
│       ├─ test
│       ├─ train
│       ├─ trainval
│       └─ val
├─ DQ-DETR

Pretrained Weights

Citation

@InProceedings{huang2024dq,
author={Huang, Yi-Xin and Liu, Hou-I and Shuai, Hong-Han and Cheng, Wen-Huang},
title={DQ-DETR: DETR with Dynamic Query for Tiny Object Detection},
booktitle={European Conference on Computer Vision},
pages={290--305},
year={2025},
organization={Springer}
}

@ARTICLE{10518058,
  author={Liu, Hou-I and Tseng, Yu-Wen and Chang, Kai-Cheng and Wang, Pin-Jyun and Shuai, Hong-Han and Cheng, Wen-Huang},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={A DeNoising FPN With Transformer R-CNN for Tiny Object Detection}, 
  year={2024},
  volume={62},
  number={},
  pages={1-15},
}

About

DQ-DETR: DETR with Dynamic Query for Tiny Object Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published