Skip to content

A DeNoising FPN with Transformer R-CNN for Tiny Object Detection

License

Notifications You must be signed in to change notification settings

hoiliu-0801/DNTR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A DeNoising FPN with Transformer R-CNN for Tiny Object Detection

method

A PyTorch implementation and pretrained models for DNTR (DeNoising Transformer R-CNN). We present DN-FPN, a plug-in that suppresses noise generated during the fusion of FPNs. In addition, we renalvate the standard R-CNN to consist of a transformer structure, namely Trans R-CNN.(base)

News

[2024/7/1]: DQ-DETR has been accepted by ECCV 2024. 🔥🔥🔥 [2024/5/3]: DNTR has been accepted by TGRS 2024. 🔥🔥🔥

Other Research Paper on Tiny Object Detection

Title Venue Links
DNTR TGRS 2024 Paper | code | 中文解读
DQ-DETR ECCV 2024 Paper | code | 中文解读

Installation and Get Started

Our model is based on mmdet-aitod and MMDetection.

Please follow the following steps for installation.

git clone https://github.com/hoiliu-0801/DNTR.git
cd DNTR/mmdet-dntr
# Installation
sh install.sh

Get Started with single GPU

Training DNTR, for example :

python tools/train.py configs/aitod-dntr/aitod_DNTR_mask.py

Testing DNTR, for example :

python tools/test.py configs/aitod-dntr/aitod_DNTR_mask.py

Performance

Table 1. Training Set: AI-TOD trainval set, Testing Set: AI-TOD test set, 36 epochs, where FRCN, DR denotes Faster R-CNN and DetectoRS, respectively.

Method Backbone mAP AP50 AP75 APvt APt APs APm
FRCN R-50 11.1 26.3 7.6 0.0 7.2 23.3 33.6
ATSS R-50 12.8 30.6 8.5 1.9 11.6 19.5 29.2
ATSS w/ DN-FPN R-50 17.9 41.0 12.9 3.7 16.4 25.3 35.0
NWD-RKA R-50 23.4 53.5 16.8 8.7 23.8 28.5 36.0
DNTR R-50 26.2 56.7 20.2 12.8 26.4 31.0 37.0
DNTR (New) R-50 27.2 56.3 21.8 15.2 27.4 31.9 38.5

Table 2. Training Set: Visdrone train set, Validation Set: Visdrone val set, 12 epochs,

Method Backbone AP AP50 AP75
DNTR R-50 34.4 57.9 35.3
UFPMP w/o DN-FPN R-50 36.6 62.4 36.7
UFPMP w/ DN-FPN R-50 37.8 62.7 38.6

Pretrained Weights of AI-TOD-v1 and AI-TOD-v2 .

https://drive.google.com/drive/folders/1i0mYPQ3Cz_k4iAIvSwecwpWMX_wivxzY

Note

If you want to run other baseline method with DN-FPN, please replace /mmdet/models/detectors/two_stage_ori.py with mmdet/models/detectors/two_stage.py.

For example: Faster R-CNN: python tools/train.py configs/aitod-dntr/aitod_faster_r50_dntr_1x.py.

Citation

@ARTICLE{10518058,
  author={Liu, Hou-I and Tseng, Yu-Wen and Chang, Kai-Cheng and Wang, Pin-Jyun and Shuai, Hong-Han and Cheng, Wen-Huang},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={A DeNoising FPN With Transformer R-CNN for Tiny Object Detection}, 
  year={2024},
  volume={62},
  number={},
  pages={1-15},
}

@InProceedings{huang2024dq,
author={Huang, Yi-Xin and Liu, Hou-I and Shuai, Hong-Han and Cheng, Wen-Huang},
title={DQ-DETR: DETR with Dynamic Query for Tiny Object Detection},
booktitle={European Conference on Computer Vision},
pages={290--305},
year={2025},
organization={Springer}
}

About

A DeNoising FPN with Transformer R-CNN for Tiny Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published