Skip to content
This repository was archived by the owner on Sep 9, 2023. It is now read-only.

samples: updates samples to v1 (3 of 8) #215

Merged
merged 13 commits into from
Apr 21, 2021
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright 2020 Google LLC
* Copyright 2021 Google LLC

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: no need to update

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Okay, thanks for letting me know!

*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand All @@ -17,12 +17,12 @@
package aiplatform;

// [START aiplatform_create_training_pipeline_custom_job_sample]
import com.google.cloud.aiplatform.v1beta1.LocationName;
import com.google.cloud.aiplatform.v1beta1.Model;
import com.google.cloud.aiplatform.v1beta1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1beta1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,14 @@
package aiplatform;

// [START aiplatform_create_training_pipeline_custom_training_managed_dataset_sample]
import com.google.cloud.aiplatform.v1beta1.GcsDestination;
import com.google.cloud.aiplatform.v1beta1.InputDataConfig;
import com.google.cloud.aiplatform.v1beta1.LocationName;
import com.google.cloud.aiplatform.v1beta1.Model;
import com.google.cloud.aiplatform.v1beta1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1beta1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,28 +18,24 @@

// [START aiplatform_create_training_pipeline_image_classification_sample]
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1beta1.DeployedModelRef;
import com.google.cloud.aiplatform.v1beta1.EnvVar;
import com.google.cloud.aiplatform.v1beta1.ExplanationMetadata;
import com.google.cloud.aiplatform.v1beta1.ExplanationParameters;
import com.google.cloud.aiplatform.v1beta1.ExplanationSpec;
import com.google.cloud.aiplatform.v1beta1.FilterSplit;
import com.google.cloud.aiplatform.v1beta1.FractionSplit;
import com.google.cloud.aiplatform.v1beta1.InputDataConfig;
import com.google.cloud.aiplatform.v1beta1.LocationName;
import com.google.cloud.aiplatform.v1beta1.Model;
import com.google.cloud.aiplatform.v1beta1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1beta1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1beta1.Port;
import com.google.cloud.aiplatform.v1beta1.PredefinedSplit;
import com.google.cloud.aiplatform.v1beta1.PredictSchemata;
import com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution;
import com.google.cloud.aiplatform.v1beta1.TimestampSplit;
import com.google.cloud.aiplatform.v1beta1.TrainingPipeline;
import com.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageClassificationInputs;
import com.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType;
import com.google.rpc.Status;
import java.io.IOException;

Expand Down Expand Up @@ -204,25 +200,6 @@ static void createTrainingPipelineImageClassificationSample(
System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}

ExplanationSpec explanationSpec = modelResponse.getExplanationSpec();
System.out.println("Explanation Spec");

ExplanationParameters explanationParameters = explanationSpec.getParameters();
System.out.println("Parameters");

SampledShapleyAttribution sampledShapleyAttribution =
explanationParameters.getSampledShapleyAttribution();
System.out.println("Sampled Shapley Attribution");
System.out.format("Path Count: %s\n", sampledShapleyAttribution.getPathCount());

ExplanationMetadata explanationMetadata = explanationSpec.getMetadata();
System.out.println("Metadata");
System.out.format("Inputs: %s\n", explanationMetadata.getInputsMap());
System.out.format("Outputs: %s\n", explanationMetadata.getOutputsMap());
System.out.format(
"Feature Attributions Schema_uri: %s\n",
explanationMetadata.getFeatureAttributionsSchemaUri());

Status status = trainingPipelineResponse.getError();
System.out.println("Error");
Copy link

@averikitsch averikitsch Apr 16, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this suppose to error or does this need a catch statement? (same for other samples)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No, the service might run into an error during model training that is unrelated to the request sent by the customer. There isn't an error that we can catch for this. (Same as other samples.)

System.out.format("Code: %s\n", status.getCode());
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,26 +19,22 @@
// [START aiplatform_create_training_pipeline_image_object_detection_sample]

import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1beta1.DeployedModelRef;
import com.google.cloud.aiplatform.v1beta1.EnvVar;
import com.google.cloud.aiplatform.v1beta1.ExplanationMetadata;
import com.google.cloud.aiplatform.v1beta1.ExplanationParameters;
import com.google.cloud.aiplatform.v1beta1.ExplanationSpec;
import com.google.cloud.aiplatform.v1beta1.FilterSplit;
import com.google.cloud.aiplatform.v1beta1.FractionSplit;
import com.google.cloud.aiplatform.v1beta1.InputDataConfig;
import com.google.cloud.aiplatform.v1beta1.LocationName;
import com.google.cloud.aiplatform.v1beta1.Model;
import com.google.cloud.aiplatform.v1beta1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1beta1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1beta1.Port;
import com.google.cloud.aiplatform.v1beta1.PredefinedSplit;
import com.google.cloud.aiplatform.v1beta1.PredictSchemata;
import com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution;
import com.google.cloud.aiplatform.v1beta1.TimestampSplit;
import com.google.cloud.aiplatform.v1beta1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageObjectDetectionInputs;
import com.google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageObjectDetectionInputs.ModelType;
import com.google.rpc.Status;
Expand Down Expand Up @@ -204,25 +200,6 @@ static void createTrainingPipelineImageObjectDetectionSample(
System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}

ExplanationSpec explanationSpec = modelResponse.getExplanationSpec();
System.out.println("Explanation Spec");

ExplanationParameters explanationParameters = explanationSpec.getParameters();
System.out.println("Parameters");

SampledShapleyAttribution sampledShapleyAttribution =
explanationParameters.getSampledShapleyAttribution();
System.out.println("Sampled Shapley Attribution");
System.out.format("Path Count: %s\n", sampledShapleyAttribution.getPathCount());

ExplanationMetadata explanationMetadata = explanationSpec.getMetadata();
System.out.println("Metadata");
System.out.format("Inputs: %s\n", explanationMetadata.getInputsMap());
System.out.format("Outputs: %s\n", explanationMetadata.getOutputsMap());
System.out.format(
"Feature Attributions Schema_uri: %s\n",
explanationMetadata.getFeatureAttributionsSchemaUri());

Status status = trainingPipelineResponse.getError();
System.out.println("Error");
System.out.format("Code: %s\n", status.getCode());
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,26 +18,22 @@

// [START aiplatform_create_training_pipeline_sample]

import com.google.cloud.aiplatform.v1beta1.DeployedModelRef;
import com.google.cloud.aiplatform.v1beta1.EnvVar;
import com.google.cloud.aiplatform.v1beta1.ExplanationMetadata;
import com.google.cloud.aiplatform.v1beta1.ExplanationParameters;
import com.google.cloud.aiplatform.v1beta1.ExplanationSpec;
import com.google.cloud.aiplatform.v1beta1.FilterSplit;
import com.google.cloud.aiplatform.v1beta1.FractionSplit;
import com.google.cloud.aiplatform.v1beta1.InputDataConfig;
import com.google.cloud.aiplatform.v1beta1.LocationName;
import com.google.cloud.aiplatform.v1beta1.Model;
import com.google.cloud.aiplatform.v1beta1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1beta1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1beta1.Port;
import com.google.cloud.aiplatform.v1beta1.PredefinedSplit;
import com.google.cloud.aiplatform.v1beta1.PredictSchemata;
import com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution;
import com.google.cloud.aiplatform.v1beta1.TimestampSplit;
import com.google.cloud.aiplatform.v1beta1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import com.google.rpc.Status;
Expand Down Expand Up @@ -204,25 +200,6 @@ static void createTrainingPipelineSample(
System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}

ExplanationSpec explanationSpec = modelResponse.getExplanationSpec();
System.out.println("Explanation Spec");

ExplanationParameters explanationParameters = explanationSpec.getParameters();
System.out.println("Parameters");

SampledShapleyAttribution sampledShapleyAttribution =
explanationParameters.getSampledShapleyAttribution();
System.out.println("Sampled Shapley Attribution");
System.out.format("Path Count: %s\n", sampledShapleyAttribution.getPathCount());

ExplanationMetadata explanationMetadata = explanationSpec.getMetadata();
System.out.println("Metadata");
System.out.format("Inputs: %s\n", explanationMetadata.getInputsMap());
System.out.format("Outputs: %s\n", explanationMetadata.getOutputsMap());
System.out.format(
"Feature Attributions Schema_uri: %s\n",
explanationMetadata.getFeatureAttributionsSchemaUri());

Status status = trainingPipelineResponse.getError();
System.out.println("Error");
System.out.format("Code: %s\n", status.getCode());
Expand Down
Loading