Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add debug utilities for Vulkan #90993

Merged
merged 1 commit into from
Aug 21, 2024

Conversation

darksylinc
Copy link
Contributor

@darksylinc darksylinc commented Apr 21, 2024

Features:

  • Debug-only tracking of objects by type. See get_driver_allocs_by_object_type et al.
  • Debug-only Breadcrumb info for debugging GPU crashes and device lost
  • Performance report per frame from get_perf_report
  • Some VMA calls had to be modified in order to insert the necessary memory callbacks

Functionality marked as "debug-only" is only available in debug or dev builds.

Misc fixes:

  • Shaders are more aggressively unloaded
  • Early break optimization in RenderingDevice::uniform_set_create

============================

The work was performed by collaboration of TheForge and Google. I am merely splitting it up into smaller PRs and cleaning it up.

PR comments

This is the first PR from the TheForge changed. This one is the most important one because:

  1. It sets the foundation for the rest of the upcoming changes.
  2. 99% of these changes should be harmless. They are not compiled in non-debug and non-dev builds.
  3. They're quite verbose in terms of lines of code, so getting this out of the way really reduces the mental load.

Update

Thanks everyone for the help! Most of the issues have been addressed. Almost all CI passes now. Windows now compiles.

3 outstanding things remain:

  1. Turning breadcrumbs into a single uint32_t. I want the enum to still be defined in rendering_device_commons.h and document it better. Done.
  2. CI is complaining about draw_list_begin changing its signature (this is correct; although I'm not sure if the error is triggering because the bindings are wrong?). Help & Tips on this are appreciated.
  3. I've been talking with Dario, and it appears TheForge added RenderingDevice::shader_destroy_modules which must be called by hand to free (unused) Shader modules after creating the PSO. We both agree it seems like adding a shotgun to the API just to save few kilobytes of RAM (maybe a few megabytes?). I will remove it from this PR and ask TheForge for further info (perhaps it's a lot more RAM than we think?). It may also be a better idea to destroy shader modules after each PSO creation (unless they're shared), instead of doing it at higher level. Done for now. We'll revisit this later.

@darksylinc darksylinc requested review from a team as code owners April 21, 2024 23:21
Comment on lines 274 to 311
enum BreadcrumbMarker {
NONE = 0,
// Environment
REFLECTION_PROBES,
SKY_PASS,
// Light mapping
LIGHTMAPPER_PASS,
// Shadows
SHADOW_PASS_DIRECTIONAL,
SHADOW_PASS_CUBE,
// Geometry passes
OPAQUE_PASS,
ALPHA_PASS,
TRANSPARENT_PASS,
// Screen effects
POST_PROCESSING_PASS,
BLIT_PASS,
UI_PASS,
// Other
DEBUG_PASS
};

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I feel the responsibility of RenderingDevice should stay as abstract as possible in this case and not have knowledge of how the rendering pipeline works. Perhaps we can keep the breadcrumbs as a typedef of just uint32_t and the renderers (Forward+, Mobile, or future ones) can assign the semantic meaning to the numbers?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Breadcrumbs don't really add knowledge.

They're just tagging an ID. The idea is that if the app crashes we look at the report and see "what was being executed?" oh breadcrumb says ID = 2, which corresponds to... let me see... SKY_PASS.

It's up to the rendering pipelines to actually use those IDs.

In fact some parts of the code do the following:

breadcrumb = LIGHTMAPPER_PASS | (pass_id << 16)

In other words, it doesn't give knowledge about the upper levels; it's just a way of standardizing some common tags that are more likely to be used.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I totally agree with both of you.

Dario's comment is more about a separation of responsibilities. In the RenderingDevice API, we should just use uint32_t's and then in the Renderer itself, we should use an enum to standardize the common tags

Copy link
Contributor Author

@darksylinc darksylinc Apr 27, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But wouldn't that mean that:

  1. Mobile and Forward+ would have their own copies of the enum, which can get out of sync. The main issue about that is that it can cause silly mistakes when debugging that can waste hours (i.e. user got id = 7, dev looked it up what that means, but saw the wrong version).
  2. Users who want to use the RenderingDevice directly have no information about what that id is for, and even if they do, they would not adhere to any convention.

Btw I looked again and turns out only 16 bits of each breadcrumb argument are used:

uint32_t breadcrumb = (p_phase << 16) | (p_breadcrumb_data & ((1 << 16) - 1));

Perhaps we could change this argument signature to...?

// original:
void draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, RDD::BreadcrumbMarker p_phase, uint32_t p_breadcrumb_data) {}

// My proposal:
enum BreadcrumbMarker {
   // Stays the same.
}

uint32_t breadcrumb( BreadcrumbMarker p_phase, uint16_t p_data ) {
  return (p_phase << 16) | (p_data & 0xFFFF)
}

void draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, uint32_t p_breadcrumb_data) {}

This way the BreadcrumbMarker enum is still visible to everyone, but it is made clear the underlying datatype is an arbitrary uint32_t.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looking back on this. I like your suggested approach. I really don't love the RDD having high level concepts like POST_PROCESSING_PASS or SHADOW_PASS_CUBE, but at the same time, to make this feature useful we want the debug utility to print out the human readable name for the pass and not force users to look it up. You are right that looking up an ID would be a huge annoyance and significantly reduce the value of breadcrumbs.

PipelineCacheRD *pipeline = nullptr;

pipeline = &shader->pipelines[cull_variant][primitive][shader_version];
PipelineCacheRD *pipeline = &shader->pipelines[cull_variant][primitive][shader_version];
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just as a heads up, we will have a merge conflict on this case as this code will be replaced in #90400. Seeing as it's for aesthetic reasons I'd forego this change and the removal of the comment below.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ugh. This is exactly why I included it (so someone could notice it, it wasn't an aesthetic change but more like bait).

There are more upcoming changes that will affect RenderForwardMobile::_render_list_template, as there is an optimization that uses Spec Constants for key in sorting the draw calls for better draw call batching.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will probably have to ask for your help when the time comes.

@darksylinc darksylinc force-pushed the matias-TheForge branch 5 times, most recently from d71ead1 to a7aa977 Compare April 27, 2024 20:25
@darksylinc
Copy link
Contributor Author

I've made an update. Look at the "3 outstanding things remain:" in the top post where I ask for a bit of help 😄

@darksylinc darksylinc force-pushed the matias-TheForge branch 3 times, most recently from 7e15b93 to 23c4298 Compare April 28, 2024 16:13
darksylinc added a commit to darksylinc/godot that referenced this pull request Dec 9, 2024
The work was performed by collaboration of TheForge and Google. I am
merely splitting it up into smaller PRs and cleaning it up.

This is the most "risky" PR so far because the previous ones have been
miscellaneous stuff aimed at either [improve
debugging](godotengine#90993) (e.g. device
lost), [improve Android
experience](godotengine#96439) (add Swappy
for better Frame Pacing + Pre-Transformed Swapchains for slightly better
performance), or harmless [ASTC
improvements](godotengine#96045) (better
performance by simply toggling a feature when available).

However this PR contains larger modifications aimed at improving
performance or reducing memory fragmentation. With greater
modifications, come greater risks of bugs or breakage.

Changes introduced by this PR:

TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to
Render Targets that are not backed by actual GPU memory (everything
stays in cache). This works as long as load action isn't `LOAD`, and
store action must be `DONT_CARE`. This saves VRAM (it also makes
painfully obvious when a mistake introduces a performance regression).
Of particular usefulness is when doing MSAA and keeping the raw MSAA
content is not necessary.

Some GPUs get faster when the sampler settings are hard-coded into the
GLSL shaders (instead of being dynamically bound at runtime). This
required changes to the GLSL shaders, PSO creation routines, Descriptor
creation routines, and Descriptor binding routines.

 - `bool immutable_samplers_enabled = true`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

Immutable samplers requires that the samplers stay... immutable, hence
this boolean is useful if the promise gets broken. We might want to turn
this into a `GLOBAL_DEF` setting.

Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every
frame that need to be freed individually when they are no longer needed,
they all get freed at once by resetting the whole pool. Once the whole
pool is no longer in use by the GPU, it gets reset and its memory
recycled. Descriptor sets that are created to be kept around for longer
or forever (i.e. not created and freed within the same frame) **must
not** use linear pools. There may be more than one pool per frame. How
many pools per frame Godot ends up with depends on its capacity, and
that is controlled by
`rendering/rendering_device/vulkan/max_descriptors_per_pool`.

- **Possible improvement for later:** It should be possible for Godot
to adapt to how many descriptors per pool are needed on a per-key basis
(i.e. grow their capacity like `std::vector` does) after rendering a few
frames; which would be better than the current solution of having a
single global value for all pools (`max_descriptors_per_pool`) that the
user needs to tweak.

 - `bool linear_descriptor_pools_enabled = true`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.
Setting it to false is required when workarounding driver bugs (e.g.
Adreno 730).

A ridiculous optimization. Ridiculous because the original code
should've done this in the first place. Previously Godot was doing the
following:

  1. Create a command buffer **pool**. One per frame.
  2. Create multiple command buffers from the pool in point 1.
3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This
resets the cmd buffer because Godot requests the
`VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag.
  4. Add commands to the cmd buffers from point 2.
  5. Submit those commands.
6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 &
2, and repeat from step 3.

The problem here is that step 3 resets each command buffer individually.
Initially Godot used to have 1 cmd buffer per pool, thus the impact is
very low.

But not anymore (specially with Adreno workarounds to force splitting
compute dispatches into a new cmd buffer, more on this later). However
Godot keeps around a very low amount of command buffers per frame.

The recommended method is to reset the whole pool, to reset all cmd
buffers at once. Hence the new steps would be:

  1. Create a command buffer **pool**. One per frame.
  2. Create multiple command buffers from the pool in point 1.
3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is
already reset/empty (see step 6).
  4. Add commands to the cmd buffers from point 2.
  5. Submit those commands.
6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 &
2, call `vkResetCommandPool` and repeat from step 3.

**Possible issues:** @DarioSamo added `transfer_worker` which creates a
command buffer pool:

```cpp
transfer_worker->command_pool =
driver->command_pool_create(transfer_queue_family,
RDD::COMMAND_BUFFER_TYPE_PRIMARY);
```

As expected, validation was complaining that command buffers were being
reused without being reset (that's good, we now know Validation Layers
will warn us of wrong use).
I fixed it by adding:

```cpp
void RenderingDevice::_wait_for_transfer_worker(TransferWorker
*p_transfer_worker) {
	driver->fence_wait(p_transfer_worker->command_fence);
	driver->command_pool_reset(p_transfer_worker->command_pool); //
! New line !
```

**Secondary cmd buffers are subject to the same issue but I didn't alter
them. I talked this with Dario and he is aware of this.**
Secondary cmd buffers are currently disabled due to other issues (it's
disabled on master).

 - `bool RenderingDeviceCommons::command_pool_reset_enabled`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

There's no other reason for this boolean. Possibly once it becomes well
tested, the boolean could be removed entirely.

Adds `command_bind_render_uniform_sets` and
`add_draw_list_bind_uniform_sets` (+ compute variants).

It performs the same as `add_draw_list_bind_uniform_set` (notice
singular vs plural), but on multiple consecutive uniform sets, thus
reducing graph and draw call overhead.

 - `bool descriptor_set_batching = true;`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

There's no other reason for this boolean. Possibly once it becomes well
tested, the boolean could be removed entirely.

Godot currently does the following:

 1. Fill the entire cmd buffer with commands.
 2. `submit()`
    - Wait with a semaphore for the swapchain.
- Trigger a semaphore to indicate when we're done (so the swapchain
can submit).
 3. `present()`

The optimization opportunity here is that 95% of Godot's rendering is
done offscreen.
Then a fullscreen pass copies everything to the swapchain. Godot doesn't
practically render directly to the swapchain.

The problem with this is that the GPU has to wait for the swapchain to
be released **to start anything**, when we could start *much earlier*.
Only the final blit pass must wait for the swapchain.

TheForge changed it to the following (more complicated, I'm simplifying
the idea):

 1. Fill the entire cmd buffer with commands.
 2. In `screen_prepare_for_drawing` do `submit()`
    - There are no semaphore waits for the swapchain.
    - Trigger a semaphore to indicate when we're done.
3. Fill a new cmd buffer that only does the final blit to the
swapchain.
 4. `submit()`
    - Wait with a semaphore for the submit() from step 2.
- Wait with a semaphore for the swapchain (so the swapchain can
submit).
- Trigger a semaphore to indicate when we're done (so the swapchain
can submit).
 5. `present()`

Dario discovered this problem independently while working on a different
platform.

**However TheForge's solution had to be rewritten from scratch:** The
complexity to achieve the solution was high and quite difficult to
maintain with the way Godot works now (after Übershaders PR).
But on the other hand, re-implementing the solution became much simpler
because Dario already had to do something similar: To fix an Adreno 730
driver bug, he had to implement splitting command buffers. **This is
exactly what we need!**. Thus it was re-written using this existing
functionality for a new purpose.

To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to
`RenderingDeviceGraph::add_draw_list_begin`, which is only set to true
by `RenderingDevice::draw_list_begin_for_screen`.

The graph will split the draw list into its own command buffer.

 - `bool split_swapchain_into_its_own_cmd_buffer = true;`

Setting it to false enforces the old behavior. This might be necessary
for consoles which follow an alternate solution to the same problem.
If not, then we should consider removing it.

PR godotengine#90993 added `shader_destroy_modules()` but it was not actually in
use.

This PR adds several places where `shader_destroy_modules()` is called
after initialization to free up memory of SPIR-V structures that are no
longer needed.
darksylinc added a commit to darksylinc/godot that referenced this pull request Jan 24, 2025
PR godotengine#90993 needed to get rid of VMA_MEMORY_USAGE_AUTO_PREFER_HOST because
we no longer used vmaCreateBuffer so we could specify the allocation
callbacks.

This however resulted in the wrong memory pool being chosen, causing
signficant performance slowdown.

Indicate additional preferred flags to help VMA select the proper pool.

Fixes godotengine#101905
Splizard pushed a commit to grow-graphics/godot that referenced this pull request Feb 2, 2025
PR godotengine#90993 needed to get rid of VMA_MEMORY_USAGE_AUTO_PREFER_HOST because
we no longer used vmaCreateBuffer so we could specify the allocation
callbacks.

This however resulted in the wrong memory pool being chosen, causing
signficant performance slowdown.

Indicate additional preferred flags to help VMA select the proper pool.

Fixes godotengine#101905
tGautot pushed a commit to tGautot/godot that referenced this pull request Feb 5, 2025
The work was performed by collaboration of TheForge and Google. I am
merely splitting it up into smaller PRs and cleaning it up.

This is the most "risky" PR so far because the previous ones have been
miscellaneous stuff aimed at either [improve
debugging](godotengine#90993) (e.g. device
lost), [improve Android
experience](godotengine#96439) (add Swappy
for better Frame Pacing + Pre-Transformed Swapchains for slightly better
performance), or harmless [ASTC
improvements](godotengine#96045) (better
performance by simply toggling a feature when available).

However this PR contains larger modifications aimed at improving
performance or reducing memory fragmentation. With greater
modifications, come greater risks of bugs or breakage.

Changes introduced by this PR:

TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to
Render Targets that are not backed by actual GPU memory (everything
stays in cache). This works as long as load action isn't `LOAD`, and
store action must be `DONT_CARE`. This saves VRAM (it also makes
painfully obvious when a mistake introduces a performance regression).
Of particular usefulness is when doing MSAA and keeping the raw MSAA
content is not necessary.

Some GPUs get faster when the sampler settings are hard-coded into the
GLSL shaders (instead of being dynamically bound at runtime). This
required changes to the GLSL shaders, PSO creation routines, Descriptor
creation routines, and Descriptor binding routines.

 - `bool immutable_samplers_enabled = true`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

Immutable samplers requires that the samplers stay... immutable, hence
this boolean is useful if the promise gets broken. We might want to turn
this into a `GLOBAL_DEF` setting.

Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every
frame that need to be freed individually when they are no longer needed,
they all get freed at once by resetting the whole pool. Once the whole
pool is no longer in use by the GPU, it gets reset and its memory
recycled. Descriptor sets that are created to be kept around for longer
or forever (i.e. not created and freed within the same frame) **must
not** use linear pools. There may be more than one pool per frame. How
many pools per frame Godot ends up with depends on its capacity, and
that is controlled by
`rendering/rendering_device/vulkan/max_descriptors_per_pool`.

- **Possible improvement for later:** It should be possible for Godot
to adapt to how many descriptors per pool are needed on a per-key basis
(i.e. grow their capacity like `std::vector` does) after rendering a few
frames; which would be better than the current solution of having a
single global value for all pools (`max_descriptors_per_pool`) that the
user needs to tweak.

 - `bool linear_descriptor_pools_enabled = true`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.
Setting it to false is required when workarounding driver bugs (e.g.
Adreno 730).

A ridiculous optimization. Ridiculous because the original code
should've done this in the first place. Previously Godot was doing the
following:

  1. Create a command buffer **pool**. One per frame.
  2. Create multiple command buffers from the pool in point 1.
3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This
resets the cmd buffer because Godot requests the
`VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag.
  4. Add commands to the cmd buffers from point 2.
  5. Submit those commands.
6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 &
2, and repeat from step 3.

The problem here is that step 3 resets each command buffer individually.
Initially Godot used to have 1 cmd buffer per pool, thus the impact is
very low.

But not anymore (specially with Adreno workarounds to force splitting
compute dispatches into a new cmd buffer, more on this later). However
Godot keeps around a very low amount of command buffers per frame.

The recommended method is to reset the whole pool, to reset all cmd
buffers at once. Hence the new steps would be:

  1. Create a command buffer **pool**. One per frame.
  2. Create multiple command buffers from the pool in point 1.
3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is
already reset/empty (see step 6).
  4. Add commands to the cmd buffers from point 2.
  5. Submit those commands.
6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 &
2, call `vkResetCommandPool` and repeat from step 3.

**Possible issues:** @DarioSamo added `transfer_worker` which creates a
command buffer pool:

```cpp
transfer_worker->command_pool =
driver->command_pool_create(transfer_queue_family,
RDD::COMMAND_BUFFER_TYPE_PRIMARY);
```

As expected, validation was complaining that command buffers were being
reused without being reset (that's good, we now know Validation Layers
will warn us of wrong use).
I fixed it by adding:

```cpp
void RenderingDevice::_wait_for_transfer_worker(TransferWorker
*p_transfer_worker) {
	driver->fence_wait(p_transfer_worker->command_fence);
	driver->command_pool_reset(p_transfer_worker->command_pool); //
! New line !
```

**Secondary cmd buffers are subject to the same issue but I didn't alter
them. I talked this with Dario and he is aware of this.**
Secondary cmd buffers are currently disabled due to other issues (it's
disabled on master).

 - `bool RenderingDeviceCommons::command_pool_reset_enabled`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

There's no other reason for this boolean. Possibly once it becomes well
tested, the boolean could be removed entirely.

Adds `command_bind_render_uniform_sets` and
`add_draw_list_bind_uniform_sets` (+ compute variants).

It performs the same as `add_draw_list_bind_uniform_set` (notice
singular vs plural), but on multiple consecutive uniform sets, thus
reducing graph and draw call overhead.

 - `bool descriptor_set_batching = true;`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

There's no other reason for this boolean. Possibly once it becomes well
tested, the boolean could be removed entirely.

Godot currently does the following:

 1. Fill the entire cmd buffer with commands.
 2. `submit()`
    - Wait with a semaphore for the swapchain.
- Trigger a semaphore to indicate when we're done (so the swapchain
can submit).
 3. `present()`

The optimization opportunity here is that 95% of Godot's rendering is
done offscreen.
Then a fullscreen pass copies everything to the swapchain. Godot doesn't
practically render directly to the swapchain.

The problem with this is that the GPU has to wait for the swapchain to
be released **to start anything**, when we could start *much earlier*.
Only the final blit pass must wait for the swapchain.

TheForge changed it to the following (more complicated, I'm simplifying
the idea):

 1. Fill the entire cmd buffer with commands.
 2. In `screen_prepare_for_drawing` do `submit()`
    - There are no semaphore waits for the swapchain.
    - Trigger a semaphore to indicate when we're done.
3. Fill a new cmd buffer that only does the final blit to the
swapchain.
 4. `submit()`
    - Wait with a semaphore for the submit() from step 2.
- Wait with a semaphore for the swapchain (so the swapchain can
submit).
- Trigger a semaphore to indicate when we're done (so the swapchain
can submit).
 5. `present()`

Dario discovered this problem independently while working on a different
platform.

**However TheForge's solution had to be rewritten from scratch:** The
complexity to achieve the solution was high and quite difficult to
maintain with the way Godot works now (after Übershaders PR).
But on the other hand, re-implementing the solution became much simpler
because Dario already had to do something similar: To fix an Adreno 730
driver bug, he had to implement splitting command buffers. **This is
exactly what we need!**. Thus it was re-written using this existing
functionality for a new purpose.

To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to
`RenderingDeviceGraph::add_draw_list_begin`, which is only set to true
by `RenderingDevice::draw_list_begin_for_screen`.

The graph will split the draw list into its own command buffer.

 - `bool split_swapchain_into_its_own_cmd_buffer = true;`

Setting it to false enforces the old behavior. This might be necessary
for consoles which follow an alternate solution to the same problem.
If not, then we should consider removing it.

PR godotengine#90993 added `shader_destroy_modules()` but it was not actually in
use.

This PR adds several places where `shader_destroy_modules()` is called
after initialization to free up memory of SPIR-V structures that are no
longer needed.
tGautot pushed a commit to tGautot/godot that referenced this pull request Feb 5, 2025
PR godotengine#90993 needed to get rid of VMA_MEMORY_USAGE_AUTO_PREFER_HOST because
we no longer used vmaCreateBuffer so we could specify the allocation
callbacks.

This however resulted in the wrong memory pool being chosen, causing
signficant performance slowdown.

Indicate additional preferred flags to help VMA select the proper pool.

Fixes godotengine#101905
tGautot pushed a commit to tGautot/godot that referenced this pull request Feb 5, 2025
The work was performed by collaboration of TheForge and Google. I am
merely splitting it up into smaller PRs and cleaning it up.

This is the most "risky" PR so far because the previous ones have been
miscellaneous stuff aimed at either [improve
debugging](godotengine#90993) (e.g. device
lost), [improve Android
experience](godotengine#96439) (add Swappy
for better Frame Pacing + Pre-Transformed Swapchains for slightly better
performance), or harmless [ASTC
improvements](godotengine#96045) (better
performance by simply toggling a feature when available).

However this PR contains larger modifications aimed at improving
performance or reducing memory fragmentation. With greater
modifications, come greater risks of bugs or breakage.

Changes introduced by this PR:

TBDR GPUs (e.g. most of Android + iOS + M1 Apple) support rendering to
Render Targets that are not backed by actual GPU memory (everything
stays in cache). This works as long as load action isn't `LOAD`, and
store action must be `DONT_CARE`. This saves VRAM (it also makes
painfully obvious when a mistake introduces a performance regression).
Of particular usefulness is when doing MSAA and keeping the raw MSAA
content is not necessary.

Some GPUs get faster when the sampler settings are hard-coded into the
GLSL shaders (instead of being dynamically bound at runtime). This
required changes to the GLSL shaders, PSO creation routines, Descriptor
creation routines, and Descriptor binding routines.

 - `bool immutable_samplers_enabled = true`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

Immutable samplers requires that the samplers stay... immutable, hence
this boolean is useful if the promise gets broken. We might want to turn
this into a `GLOBAL_DEF` setting.

Instead of creating dozen/hundreds/thousands of `VkDescriptorSet` every
frame that need to be freed individually when they are no longer needed,
they all get freed at once by resetting the whole pool. Once the whole
pool is no longer in use by the GPU, it gets reset and its memory
recycled. Descriptor sets that are created to be kept around for longer
or forever (i.e. not created and freed within the same frame) **must
not** use linear pools. There may be more than one pool per frame. How
many pools per frame Godot ends up with depends on its capacity, and
that is controlled by
`rendering/rendering_device/vulkan/max_descriptors_per_pool`.

- **Possible improvement for later:** It should be possible for Godot
to adapt to how many descriptors per pool are needed on a per-key basis
(i.e. grow their capacity like `std::vector` does) after rendering a few
frames; which would be better than the current solution of having a
single global value for all pools (`max_descriptors_per_pool`) that the
user needs to tweak.

 - `bool linear_descriptor_pools_enabled = true`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.
Setting it to false is required when workarounding driver bugs (e.g.
Adreno 730).

A ridiculous optimization. Ridiculous because the original code
should've done this in the first place. Previously Godot was doing the
following:

  1. Create a command buffer **pool**. One per frame.
  2. Create multiple command buffers from the pool in point 1.
3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2. This
resets the cmd buffer because Godot requests the
`VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT` flag.
  4. Add commands to the cmd buffers from point 2.
  5. Submit those commands.
6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 &
2, and repeat from step 3.

The problem here is that step 3 resets each command buffer individually.
Initially Godot used to have 1 cmd buffer per pool, thus the impact is
very low.

But not anymore (specially with Adreno workarounds to force splitting
compute dispatches into a new cmd buffer, more on this later). However
Godot keeps around a very low amount of command buffers per frame.

The recommended method is to reset the whole pool, to reset all cmd
buffers at once. Hence the new steps would be:

  1. Create a command buffer **pool**. One per frame.
  2. Create multiple command buffers from the pool in point 1.
3. Call `vkBeginCommandBuffer` on the cmd buffer in point 2, which is
already reset/empty (see step 6).
  4. Add commands to the cmd buffers from point 2.
  5. Submit those commands.
6. On frame N + 2, recycle the buffer pool and cmd buffers from pt 1 &
2, call `vkResetCommandPool` and repeat from step 3.

**Possible issues:** @DarioSamo added `transfer_worker` which creates a
command buffer pool:

```cpp
transfer_worker->command_pool =
driver->command_pool_create(transfer_queue_family,
RDD::COMMAND_BUFFER_TYPE_PRIMARY);
```

As expected, validation was complaining that command buffers were being
reused without being reset (that's good, we now know Validation Layers
will warn us of wrong use).
I fixed it by adding:

```cpp
void RenderingDevice::_wait_for_transfer_worker(TransferWorker
*p_transfer_worker) {
	driver->fence_wait(p_transfer_worker->command_fence);
	driver->command_pool_reset(p_transfer_worker->command_pool); //
! New line !
```

**Secondary cmd buffers are subject to the same issue but I didn't alter
them. I talked this with Dario and he is aware of this.**
Secondary cmd buffers are currently disabled due to other issues (it's
disabled on master).

 - `bool RenderingDeviceCommons::command_pool_reset_enabled`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

There's no other reason for this boolean. Possibly once it becomes well
tested, the boolean could be removed entirely.

Adds `command_bind_render_uniform_sets` and
`add_draw_list_bind_uniform_sets` (+ compute variants).

It performs the same as `add_draw_list_bind_uniform_set` (notice
singular vs plural), but on multiple consecutive uniform sets, thus
reducing graph and draw call overhead.

 - `bool descriptor_set_batching = true;`

Setting it to false enforces the old behavior. Useful for debugging bugs
and regressions.

There's no other reason for this boolean. Possibly once it becomes well
tested, the boolean could be removed entirely.

Godot currently does the following:

 1. Fill the entire cmd buffer with commands.
 2. `submit()`
    - Wait with a semaphore for the swapchain.
- Trigger a semaphore to indicate when we're done (so the swapchain
can submit).
 3. `present()`

The optimization opportunity here is that 95% of Godot's rendering is
done offscreen.
Then a fullscreen pass copies everything to the swapchain. Godot doesn't
practically render directly to the swapchain.

The problem with this is that the GPU has to wait for the swapchain to
be released **to start anything**, when we could start *much earlier*.
Only the final blit pass must wait for the swapchain.

TheForge changed it to the following (more complicated, I'm simplifying
the idea):

 1. Fill the entire cmd buffer with commands.
 2. In `screen_prepare_for_drawing` do `submit()`
    - There are no semaphore waits for the swapchain.
    - Trigger a semaphore to indicate when we're done.
3. Fill a new cmd buffer that only does the final blit to the
swapchain.
 4. `submit()`
    - Wait with a semaphore for the submit() from step 2.
- Wait with a semaphore for the swapchain (so the swapchain can
submit).
- Trigger a semaphore to indicate when we're done (so the swapchain
can submit).
 5. `present()`

Dario discovered this problem independently while working on a different
platform.

**However TheForge's solution had to be rewritten from scratch:** The
complexity to achieve the solution was high and quite difficult to
maintain with the way Godot works now (after Übershaders PR).
But on the other hand, re-implementing the solution became much simpler
because Dario already had to do something similar: To fix an Adreno 730
driver bug, he had to implement splitting command buffers. **This is
exactly what we need!**. Thus it was re-written using this existing
functionality for a new purpose.

To achieve this, I added a new argument, `bool p_split_cmd_buffer`, to
`RenderingDeviceGraph::add_draw_list_begin`, which is only set to true
by `RenderingDevice::draw_list_begin_for_screen`.

The graph will split the draw list into its own command buffer.

 - `bool split_swapchain_into_its_own_cmd_buffer = true;`

Setting it to false enforces the old behavior. This might be necessary
for consoles which follow an alternate solution to the same problem.
If not, then we should consider removing it.

PR godotengine#90993 added `shader_destroy_modules()` but it was not actually in
use.

This PR adds several places where `shader_destroy_modules()` is called
after initialization to free up memory of SPIR-V structures that are no
longer needed.
tGautot pushed a commit to tGautot/godot that referenced this pull request Feb 5, 2025
PR godotengine#90993 needed to get rid of VMA_MEMORY_USAGE_AUTO_PREFER_HOST because
we no longer used vmaCreateBuffer so we could specify the allocation
callbacks.

This however resulted in the wrong memory pool being chosen, causing
signficant performance slowdown.

Indicate additional preferred flags to help VMA select the proper pool.

Fixes godotengine#101905
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

9 participants