Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ensure additional metadata to trackers don't throw error in happy case. #290

Merged

Conversation

dushyantbehl
Copy link
Contributor

@dushyantbehl dushyantbehl commented Aug 7, 2024

Description of the change

Ensure additional metadata to trackers will not throw errors in happy case.

Related issue number

Fixes #289

How to verify the PR

Verified

(.fms-hf-tuning-venv) ➜  fms-hf-tuning git:(fix-bad-value-error) ✗ accelerate launch \
--main_process_port 1234 \
--config_file /home/schrodinger/workspace/ibm/fms-hf-tuning/fixtures/accelerate_fsdp_defaults.yaml \
--num_processes 2 \
-m tuning.sft_trainer \
--model_name_or_path "Maykeye/TinyLLama-v0" \
--training_data_path "/home/schrodinger/bin/twitter_complaints.json" \
--output_dir /home/schrodinger/bin/output/tiny-llama-ft-multigpu \
--num_train_epochs 5 \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--per_device_eval_batch_size 4 \
--learning_rate 0.000001 \
--use_flash_attn no \
--response_template "\n### Label:" \
--dataset_text_field "output" \
--tracker aim \
--aim_repo /home/schrodinger/bin/aimrepo/ \
--experiment aim-test-distributed-main \
--torch_dtype float16 
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/accelerate/utils/launch.py:253: FutureWarning: `fsdp_backward_prefetch_policy` is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use `fsdp_backward_prefetch` instead
  warnings.warn(
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
max_seq_length 4096 exceeds tokenizer.model_max_length             2048, using tokenizer.model_max_length 2048
max_seq_length 4096 exceeds tokenizer.model_max_length             2048, using tokenizer.model_max_length 2048
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/transformers/training_args.py:2007: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:100: FutureWarning: Deprecated argument(s) used in '__init__': dataset_text_field, max_seq_length. Will not be supported from version '1.0.0'.

Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.
  warnings.warn(message, FutureWarning)
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:280: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:318: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/transformers/training_args.py:2007: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:100: FutureWarning: Deprecated argument(s) used in '__init__': dataset_text_field, max_seq_length. Will not be supported from version '1.0.0'.

Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.
  warnings.warn(message, FutureWarning)
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:280: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:318: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:408: UserWarning: You passed a tokenizer with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to overflow issues when training a model in half-precision. You might consider adding `tokenizer.padding_side = 'right'` to your code.
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/trl/trainer/sft_trainer.py:408: UserWarning: You passed a tokenizer with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to overflow issues when training a model in half-precision. You might consider adding `tokenizer.padding_side = 'right'` to your code.
  warnings.warn(
{'loss': 22276357.5138, 'grad_norm': nan, 'learning_rate': 8e-07, 'epoch': 1.0}                                                                                                                                                               
 20%|███████████████████████████████████████▌                                                                                                                                                              | 325/1625 [01:54<07:28,  2.90it/s]/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(io.BytesIO(b))
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(io.BytesIO(b))
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 6e-07, 'epoch': 2.0}                                                                                                                                                                         
 40%|███████████████████████████████████████████████████████████████████████████████▏                                                                                                                      | 650/1625 [03:48<06:13,  2.61it/s]/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(io.BytesIO(b))
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 4e-07, 'epoch': 3.0}                                                                                                                                                                         
 60%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊                                                                               | 975/1625 [05:42<03:29,  3.10it/s]/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(io.BytesIO(b))
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 2e-07, 'epoch': 4.0}                                                                                                                                                                         
 80%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌                                       | 1300/1625 [07:34<01:50,  2.94it/s]/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(io.BytesIO(b))
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1625/1625 [09:28<00:00,  2.94it/s]/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(io.BytesIO(b))
{'loss': 0.0, 'grad_norm': nan, 'learning_rate': 0.0, 'epoch': 5.0}                                                                                                                                                                           
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1625/1625 [09:28<00:00,  2.94it/s]/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py:689: FutureWarning: FSDP.state_dict_type() and FSDP.set_state_dict_type() are being deprecated. Please use APIs, get_state_dict() and set_state_dict(), which can support different parallelisms, FSDP1, FSDP2, DDP. API doc: https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.state_dict.get_state_dict .Tutorial: https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html .
  warnings.warn(
/home/schrodinger/.fms-hf-tuning-venv/lib/python3.10/site-packages/torch/storage.py:414: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(io.BytesIO(b))
{'train_runtime': 568.8356, 'train_samples_per_second': 91.415, 'train_steps_per_second': 2.857, 'train_loss': 4455271.502769231, 'epoch': 5.0}                                                                                               
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1625/1625 [09:28<00:00,  2.86it/s]

Was the PR tested

  • I have added >=1 unit test(s) for every new method I have added.
  • [x ] I have ensured all unit tests pass

@ashokponkumar
Copy link
Collaborator

@kmehant PTAL

@kmehant kmehant merged commit baeecf1 into foundation-model-stack:main Aug 7, 2024
7 checks passed
anhuong added a commit that referenced this pull request Aug 14, 2024
* Set default value of target_modules to be None in LoraConfig

Signed-off-by: Will Johnson <[email protected]>

* Removal of transformers logger and addition of python logger

Signed-off-by: Abhishek <[email protected]>

* FMT and lint check: Removal of transformers logger and addition of python logger

Signed-off-by: Abhishek <[email protected]>

* fix: remove lm_head for granite with llama arch models (#258)

* initial code for deleting lm_head

Signed-off-by: Anh-Uong <[email protected]>

* fix logic for copying checkpoint

Signed-off-by: Anh-Uong <[email protected]>

* fix check that embed_tokens and lm_head weights are the same

Signed-off-by: Anh-Uong <[email protected]>

* fix warning assertion

Signed-off-by: Anh-Uong <[email protected]>

* fix lm_head check, remove test

Signed-off-by: Anh-Uong <[email protected]>

* small fixes from code review

Signed-off-by: Anh-Uong <[email protected]>

* fmt

Signed-off-by: Anh-Uong <[email protected]>

---------

Signed-off-by: Anh-Uong <[email protected]>
Co-authored-by: Anh-Uong <[email protected]>
Signed-off-by: Abhishek <[email protected]>

* Add config_utils tests

Signed-off-by: Angel Luu <[email protected]>

* Fix fmt

Signed-off-by: Angel Luu <[email protected]>

* Separate tests out and use docstrings

Signed-off-by: Angel Luu <[email protected]>

* Update more field/value checks from HF defaults

Signed-off-by: Angel Luu <[email protected]>

* Fix: Addition of env var TRANSFORMERS_VERBOSITY check

Signed-off-by: Abhishek <[email protected]>

* FMT Fix: Addition of env var TRANSFORMERS_VERBOSITY check

Signed-off-by: Abhishek <[email protected]>

* Add test for tokenizer in lora config (should be ignored)

Signed-off-by: Angel Luu <[email protected]>

* Adding logging support to accelerate launch

Signed-off-by: Abhishek <[email protected]>

* FMT_FIX: Adding logging support to accelerate launch

Signed-off-by: Abhishek <[email protected]>

* bug: On save event added to callback (#256)

* feat: On save event added to callback

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Removed additional bracket

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Removed additional bracket

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Format issues resolved

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: rebase with upstream and add new line

Signed-off-by: Mehant Kammakomati <[email protected]>

---------

Signed-off-by: Padmanabha V Seshadri <[email protected]>
Signed-off-by: Mehant Kammakomati <[email protected]>
Co-authored-by: Mehant Kammakomati <[email protected]>

* feat: All metric handling changes (#263)

* feat: All metric handling changes

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Format issues

Signed-off-by: Padmanabha V Seshadri <[email protected]>

---------

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* feat: Configuration to set logging level for trigger log (#241)

* feat: Added the triggered login in the operation

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Formatting issues

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Added default config

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Moved the variable to right scope

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Checked added to validate config log level

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* fix: Removed some unwanted log file

Signed-off-by: Padmanabha V Seshadri <[email protected]>

---------

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* limit peft deps until investigate (#274)

Signed-off-by: Anh-Uong <[email protected]>

* Data custom collator (#260)

* refactor code to preprocess datasets

Co-authored-by: Alex-Brooks <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>

* fix formatting

Co-authored-by: Alex-Brooks <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>

* allow input/output in validate args

Co-authored-by: Alex-Brooks <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>

* format input/output JSON and mask

Co-authored-by: Alex-Brooks <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>

* function to return suitable collator

Co-authored-by: Alex-Brooks <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>

* add tests for SFT Trainer input/output format

Co-authored-by: Alex-Brooks <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>

* remove unused functions

Co-authored-by: Alex-Brooks <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>

* add eos token to input/output format

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* fix tests

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* improve docstrings

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* keeping JSON keys constant

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* support for input/output format

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* formatting fixes

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* update rEADME formats

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* formatting README

Signed-off-by: Sukriti-Sharma4 <[email protected]>

---------

Signed-off-by: Sukriti-Sharma4 <[email protected]>
Co-authored-by: Alex-Brooks <[email protected]>

* Revert "limit peft deps until investigate (#274)" (#275)

This reverts commit f57ff63.

Signed-off-by: Anh-Uong <[email protected]>

* feat: per process state metric (#239)

Signed-off-by: Harikrishnan Balagopal <[email protected]>

* Modify test to pass with target_modules: None

Signed-off-by: Will Johnson <[email protected]>

* Logging changes and unit tests added

Signed-off-by: Abhishek <[email protected]>

* feat: Add a dockerfile argument to enable aimstack (#261)

* Add a dockerfile argument at the end of final layer to enable aimstack.
Currenlty guarded by a dockerfile argument.

Signed-off-by: Dushyant Behl <[email protected]>

* Set the default value of ENABLE_AIM to false

Signed-off-by: Dushyant Behl <[email protected]>

---------

Signed-off-by: Dushyant Behl <[email protected]>

* Solved conflict with main

Signed-off-by: Abhishek <[email protected]>

* FMT:Fix Solved conflict with main

Signed-off-by: Abhishek <[email protected]>

* enabling tests for prompt tuning

Signed-off-by: Abhishek <[email protected]>

* feat: Support pretokenized (#272)

* feat: support pretokenized datasets

Signed-off-by: Mehant Kammakomati <[email protected]>

* fix: rebase with upstream and review commits

Signed-off-by: Mehant Kammakomati <[email protected]>

* fix: rebase with upstream and review commits

Signed-off-by: Mehant Kammakomati <[email protected]>

* fix: rebase with upstream and review commits

Signed-off-by: Mehant Kammakomati <[email protected]>

* consolidate collator code

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* add valuerrors for incorrect args

Signed-off-by: Sukriti-Sharma4 <[email protected]>

* feat: add unit tests for validate_data_args and format_dataset

Signed-off-by: Mehant Kammakomati <[email protected]>

* feat: add unit tests for validate_data_args and format_dataset

Signed-off-by: Mehant Kammakomati <[email protected]>

* feat: add unit tests for validate_data_args and format_dataset

Signed-off-by: Mehant Kammakomati <[email protected]>

* feat: add unit tests for validate_data_args and format_dataset

Signed-off-by: Mehant Kammakomati <[email protected]>

---------

Signed-off-by: Mehant Kammakomati <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>
Co-authored-by: Sukriti-Sharma4 <[email protected]>
Co-authored-by: Alex Brooks <[email protected]>

* Update packaging requirement from <24,>=23.2 to >=23.2,<25 (#212)

Updates the requirements on [packaging](https://github.com/pypa/packaging) to permit the latest version.
- [Release notes](https://github.com/pypa/packaging/releases)
- [Changelog](https://github.com/pypa/packaging/blob/main/CHANGELOG.rst)
- [Commits](pypa/packaging@23.2...24.1)

---
updated-dependencies:
- dependency-name: packaging
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <[email protected]>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Anh Uong <[email protected]>

* enabling tests for prompt tuning (#278)

Signed-off-by: Abhishek <[email protected]>
Co-authored-by: Anh Uong <[email protected]>

* fix: do not add special tokens for custom tokenizer (#279)

Signed-off-by: Mehant Kammakomati <[email protected]>

* PR changes for changing logger

Signed-off-by: Abhishek <[email protected]>

* fix: bug where the logger was not being used properly (#286)

Signed-off-by: Hari <[email protected]>

* Unit Tests changes

Signed-off-by: Abhishek <[email protected]>

* Add functionality to free disk space from Github Actions (#287)

* Add functionality to free disk space from Github Actions

Signed-off-by: Will Johnson <[email protected]>

* Add functionality to free disk space from Github Actions, relocate from build-and-publish.yaml to image.yaml

Signed-off-by: Will Johnson <[email protected]>

* Move freeing space step to before building image

Signed-off-by: Will Johnson <[email protected]>

---------

Signed-off-by: Will Johnson <[email protected]>

* commented os.environ[LOG_LEVEL] in accelerate.py for testing

Signed-off-by: Abhishek <[email protected]>

* PR changes

Signed-off-by: Abhishek <[email protected]>

* FIX:FMT

Signed-off-by: Abhishek <[email protected]>

* PR Changes

Signed-off-by: Abhishek <[email protected]>

* PR Changes

Signed-off-by: Abhishek <[email protected]>

* Add unit test to verify target_modules defaults correctly (#281)

* Add unit test to verify target_modules defaults correctly

Signed-off-by: Will Johnson <[email protected]>

* Add sft_trainer.main test to ensure target modules properly default for LoRA when set to None from CLI

Signed-off-by: Will Johnson <[email protected]>

* fmt

Signed-off-by: Will Johnson <[email protected]>

* Use model_args instead of importing, fix nits

Signed-off-by: Will Johnson <[email protected]>

* Add test to ensure target_modules defaults to None in job config

Signed-off-by: Will Johnson <[email protected]>

* Add additional check, fix nits

Signed-off-by: Will Johnson <[email protected]>

---------

Signed-off-by: Will Johnson <[email protected]>

* docs: Add documentation on experiment tracking. (#257)

Signed-off-by: Dushyant Behl <[email protected]>

* Ensure additional metadata to trackers don't throw error in happy case. (#290)

Signed-off-by: Dushyant Behl <[email protected]>

* PR Changes

Signed-off-by: Abhishek <[email protected]>

* fix multiple runid creation bug with accelerate. (#268)

Signed-off-by: Dushyant Behl <[email protected]>

* feat: logging control operation (#264)

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* Metrics file epoch indexing from 0

Signed-off-by: Abhishek <[email protected]>

* Revert last commit

Signed-off-by: Abhishek <[email protected]>

* fix run evaluation to get base model path (#273)

Signed-off-by: Anh-Uong <[email protected]>

* PR Changes

Signed-off-by: Abhishek <[email protected]>

* PR Changes

Signed-off-by: Abhishek <[email protected]>

* feat: Added additional events such as on_step_begin, on_optimizer_step, on_substep_end (#293)

Signed-off-by: Padmanabha V Seshadri <[email protected]>

* Always update setuptools to latest (#288)

Signed-off-by: James Busche <[email protected]>
Co-authored-by: Anh Uong <[email protected]>

* Rename all fixtures with correct .jsonl extension (#295)

Signed-off-by: Will Johnson <[email protected]>
Co-authored-by: Anh Uong <[email protected]>

* feat: add save_model_dir flag where final checkpoint saved (#291)

* add save_model_dir flag for final checkpoint

Signed-off-by: Anh-Uong <[email protected]>

* remove output_dir logic, add save method

Signed-off-by: Anh-Uong <[email protected]>

* update accelerate_launch, remove save tokenizer

Signed-off-by: Anh-Uong <[email protected]>

* fix: put back creation of .complete file

Signed-off-by: Anh-Uong <[email protected]>

* fix failing tests and add new ones

Signed-off-by: Anh-Uong <[email protected]>

* tests: add sft_trainer test to train and save

- small refactor of tests

Signed-off-by: Anh-Uong <[email protected]>

* add docs on saving checkpoints and fix help msg

Signed-off-by: Anh-Uong <[email protected]>

* update example and note best checkpoint

Signed-off-by: Anh-Uong <[email protected]>

* changes based on PR review

Signed-off-by: Anh-Uong <[email protected]>

* add logging to save, fix error out properly

Signed-off-by: Anh-Uong <[email protected]>

---------

Signed-off-by: Anh-Uong <[email protected]>

---------

Signed-off-by: Will Johnson <[email protected]>
Signed-off-by: Abhishek <[email protected]>
Signed-off-by: Anh-Uong <[email protected]>
Signed-off-by: Angel Luu <[email protected]>
Signed-off-by: Padmanabha V Seshadri <[email protected]>
Signed-off-by: Mehant Kammakomati <[email protected]>
Signed-off-by: Sukriti-Sharma4 <[email protected]>
Signed-off-by: Harikrishnan Balagopal <[email protected]>
Signed-off-by: Dushyant Behl <[email protected]>
Signed-off-by: dependabot[bot] <[email protected]>
Signed-off-by: Hari <[email protected]>
Signed-off-by: James Busche <[email protected]>
Co-authored-by: Abhishek <[email protected]>
Co-authored-by: Sukriti Sharma <[email protected]>
Co-authored-by: Anh-Uong <[email protected]>
Co-authored-by: Abhishek Maurya <[email protected]>
Co-authored-by: Angel Luu <[email protected]>
Co-authored-by: Angel Luu <[email protected]>
Co-authored-by: Padmanabha V Seshadri <[email protected]>
Co-authored-by: Mehant Kammakomati <[email protected]>
Co-authored-by: Alex-Brooks <[email protected]>
Co-authored-by: Hari <[email protected]>
Co-authored-by: Dushyant Behl <[email protected]>
Co-authored-by: Sukriti-Sharma4 <[email protected]>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: James Busche <[email protected]>
@dushyantbehl dushyantbehl deleted the fix-bad-value-error branch December 20, 2024 05:56
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

bug: tracker params in happy case can cause exception.
3 participants