Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updating environment, grib2 writing support, version #38

Merged
merged 19 commits into from
Sep 30, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,12 @@ jobs:
run: |
# $CONDA is an environment variable pointing to the root of the miniconda directory
echo $CONDA/bin >> $GITHUB_PATH
- name: Install grib dependencies
run: |
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt update
sudo apt install libjasper1 libjasper-dev
ldconfig -p | grep libjasper
- name: Install dependencies
run: |
conda env update --file environment.yml --name base
Expand Down
14 changes: 0 additions & 14 deletions .travis.yml

This file was deleted.

119 changes: 61 additions & 58 deletions bin/hsdata
Original file line number Diff line number Diff line change
@@ -1,18 +1,18 @@
#!/usr/bin/env python
import argparse, pdb
from multiprocessing import Pool
from hagelslag.util.Config import Config
from hagelslag.processing.TrackProcessing import TrackProcessor
from hagelslag.util.make_proj_grids import read_ncar_map_file
from hagelslag.util.create_sector_grid_data import SectorProcessor
from datetime import timedelta
import pandas as pd
import numpy as np
import argparse
import os
import traceback
from netCDF4 import Dataset, date2num
from datetime import timedelta
from multiprocessing import Pool
from os.path import join, exists

import numpy as np
import pandas as pd
from netCDF4 import Dataset

from hagelslag.processing.TrackProcessing import TrackProcessor
from hagelslag.util.Config import Config


def main():
parser = argparse.ArgumentParser("hsdata - Hagelslag Data Processor")
Expand Down Expand Up @@ -126,13 +126,13 @@ def process_ensemble_member(run_date, member, config):
if config.train:
print("Find obs tracks", run_date, member)
mrms_tracks = track_proc.find_mrms_tracks()

print("Find model tracks", run_date, member)
if patch_radius is None:
model_tracks = track_proc.find_model_tracks()
else:
model_tracks = track_proc.find_model_patch_tracks()

if model_tracks:
print(run_date, member, "Found this many model tracks: {0:d}".format(len(model_tracks)))
print("Extract model attributes", run_date, member)
Expand All @@ -154,62 +154,65 @@ def process_ensemble_member(run_date, member, config):
track_errors = None
else:
track_pairings = track_proc.match_tracks(model_tracks, mrms_tracks,
unique_matches=config.unique_matches,
closest_matches=config.closest_matches)
unique_matches=config.unique_matches,
closest_matches=config.closest_matches)
track_proc.match_size_distributions(model_tracks, mrms_tracks, track_pairings)
track_errors = track_proc.calc_track_errors(model_tracks,
mrms_tracks,
track_pairings)
mrms_tracks,
track_pairings)
print("Output data", run_date, member)
forecast_data = make_forecast_track_data(model_tracks, run_date, member,
config, track_proc.model_grid.proj, mrms_tracks, track_errors)
config, track_proc.model_grid.proj, mrms_tracks,
track_errors)
if patch_radius is not None:
print("Output netCDF", run_date, member)
forecast_track_patches_to_netcdf(model_tracks, patch_radius, run_date, member, config)
if config.json:
print("Output json", run_date, member)
forecast_tracks_to_json(model_tracks, run_date, member, config, track_proc.model_grid.proj,
observed_tracks=mrms_tracks,
track_errors=track_errors)
observed_tracks=mrms_tracks,
track_errors=track_errors)
obs_data = make_obs_track_data(mrms_tracks, member, run_date, config, track_proc.model_grid.proj)
if config.json:
obs_tracks_to_json(mrms_tracks, member, run_date, config, track_proc.model_grid.proj)
print("Output csv", run_date, member)
for table_name, table_data in obs_data.items():
csv_filename = config.csv_path + "{0}_{1}_{2}_{3}.csv".format(table_name,
"obs",
member,
run_date.strftime(
config.run_date_format))
csv_filename = join(config.csv_path, "{0}_{1}_{2}_{3}.csv".format(table_name,
"obs",
member,
run_date.strftime(
config.run_date_format)))
table_data.to_csv(csv_filename,
na_rep="nan",
float_format="%0.5f",
index=False)
na_rep="nan",
float_format="%0.5f",
index=False)
os.chmod(csv_filename, 0o666)
else:
forecast_data = make_forecast_track_data(model_tracks, run_date, member, config,
track_proc.model_grid.proj)
track_proc.model_grid.proj)
if patch_radius is not None:
forecast_track_patches_to_netcdf(model_tracks, patch_radius, run_date, member, config)
if config.json:
forecast_tracks_to_json(model_tracks, run_date, member, config, track_proc.model_grid.proj)
elif len(model_tracks) > 0:
print(run_date, member, "Make Forecast Track Data")
forecast_data = make_forecast_track_data(model_tracks, run_date, member, config, track_proc.model_grid.proj)
forecast_data = make_forecast_track_data(model_tracks, run_date, member, config,
track_proc.model_grid.proj)
if patch_radius is not None:
print(run_date, member, "Track Data to netCDF")
forecast_track_patches_to_netcdf(model_tracks, patch_radius, run_date, member, config)
if config.json:
forecast_tracks_to_json(model_tracks, run_date, member, config, track_proc.model_grid.proj)
else:
print('No {0} {1} modeled tracks found'.format(run_date,member))
print('No {0} {1} modeled tracks found'.format(run_date, member))
forecast_data = {}

for table_name, table_data in forecast_data.items():
csv_filename = config.csv_path + "{0}_{1}_{2}_{3}.csv".format(table_name,
config.ensemble_name,
member,
run_date.strftime(config.run_date_format))
csv_filename = join(config.csv_path, "{0}_{1}_{2}_{3}.csv".format(table_name,
config.ensemble_name,
member,
run_date.strftime(
config.run_date_format)))
print("Output csv file " + csv_filename)
table_data.to_csv(csv_filename,
na_rep="nan",
Expand Down Expand Up @@ -264,7 +267,7 @@ def process_observed_tracks(run_date, member, config):
mrms_tracks = track_proc.find_mrms_tracks()
if len(mrms_tracks) > 0:
obs_data = make_obs_track_data(mrms_tracks, member, run_date, config, track_proc.model_grid.proj)
if config.json:
if config.json:
obs_tracks_to_json(mrms_tracks, member, run_date, config, track_proc.model_grid.proj)
# if not os.access(config.csv_path + run_date.strftime("%Y%m%d"), os.R_OK):
# try:
Expand Down Expand Up @@ -338,10 +341,10 @@ def rematch_ensemble_tracks(run_date, member, config):
obs_data = make_obs_track_data(mrms_tracks, member, run_date, config, track_proc.model_grid.proj,
)
for table_name, table_data in obs_data.items():
table_data.to_csv(config.csv_path + "{0}_{1}_{2}_{3}.csv".format(table_name,
"obs",
member,
run_date.strftime("%Y%m%d")),
table_data.to_csv(join(config.csv_path, "{0}_{1}_{2}_{3}.csv".format(table_name,
"obs",
member,
run_date.strftime("%Y%m%d"))),
na_rep="nan",
float_format="%0.5f",
index=False)
Expand All @@ -350,10 +353,10 @@ def rematch_ensemble_tracks(run_date, member, config):
else:
forecast_data = {}
for table_name, table_data in forecast_data.items():
table_data.to_csv(config.csv_path + "{0}_{1}_{2}_{3}.csv".format(table_name,
config.ensemble_name,
member,
run_date.strftime("%Y%m%d")),
table_data.to_csv(join(config.csv_path, "{0}_{1}_{2}_{3}.csv".format(table_name,
config.ensemble_name,
member,
run_date.strftime("%Y%m%d"))),
na_rep="nan",
float_format="%0.5f",
index=False)
Expand Down Expand Up @@ -483,11 +486,11 @@ def make_forecast_track_data(forecast_tracks, run_date, member, config, proj, ob
else:
if forecast_track.observations is not None:
num_labels = len(forecast_track.observations)
for l in range(num_labels):
for label in range(num_labels):
if config.label_type == "gamma":
hail_label = forecast_track.observations[l].loc[step].values.tolist()
hail_label = forecast_track.observations[label].loc[step].values.tolist()
else:
hail_label = [forecast_track.observations[l].loc[step, "Max_Hail_Size"]]
hail_label = [forecast_track.observations[label].loc[step, "Max_Hail_Size"]]
forecast_data['track_step'].loc[track_step_count] = record + hail_label
track_step_count += 1
else:
Expand Down Expand Up @@ -545,11 +548,11 @@ def forecast_tracks_to_json(forecast_tracks, run_date, member, config, proj, obs
except OSError:
print("directory already created")

json_filename = config.geojson_path + "/".join(full_path) + \
"/{0}_{1}_{2}_model_track_{3:03d}.json".format(ensemble_name,
run_date.strftime("%Y%m%d"),
member,
f)
json_filename = join(config.geojson_path, "/".join(full_path),
"{0}_{1}_{2}_model_track_{3:03d}.json".format(ensemble_name,
run_date.strftime("%Y%m%d"),
member,
f))
json_metadata = dict(id=track_id,
ensemble_name=ensemble_name,
ensemble_member=member,
Expand Down Expand Up @@ -662,7 +665,7 @@ def forecast_track_patches_to_netcdf(forecast_tracks, patch_radius, run_date, me
if hasattr(config, "future_variables"):
for f_variable in config.future_variables:
out_file.variables[f_variable + "_future"][:] = np.vstack([f_track.attributes[f_variable + "-future"]
for f_track in forecast_tracks])
for f_track in forecast_tracks])
if config.train:
for label_column in label_columns:
try:
Expand All @@ -672,20 +675,20 @@ def forecast_track_patches_to_netcdf(forecast_tracks, patch_radius, run_date, me
out_file.variables[label_column][:] = 0

# Save configuration dictionary as global attributes.
for k,v in config.__dict__.items():
for k, v in config.__dict__.items():
# Don't save attributes that are already netCDF varaible names
if k=="dates": continue
if k=="storm_variables": continue
if k=="potential_variables": continue
if k=="tendency_variables": continue
if k == "dates": continue
if k == "storm_variables": continue
if k == "potential_variables": continue
if k == "tendency_variables": continue
v = str(v)
# Don't clobber existing attribute.
if hasattr(out_file, k):
# If it exists already, add "config_" to beginning and recheck.
alt_key = "config_" + k
if hasattr(out_file, alt_key):
# If alternative key exists too, raise attribute error.
raise AttributeError("Can't save "+k+":"+" "+v+" as global attribute. It already exists.")
raise AttributeError("Can't save " + k + ":" + " " + v + " as global attribute. It already exists.")
else:
setattr(out_file, alt_key, v)
else:
Expand Down
Loading