Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add keras notebook example #190

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
203 changes: 203 additions & 0 deletions sagemaker-python-sdk/tensorflow_keras_cifar10/cifar10_cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

import tensorflow as tf
from tensorflow.python.estimator.export.export import build_raw_serving_input_receiver_fn
from tensorflow.python.keras._impl.keras.engine.topology import InputLayer
from tensorflow.python.keras._impl.keras.layers import Conv2D, Activation, MaxPooling2D, Dropout, Flatten, Dense
from tensorflow.python.keras._impl.keras.models import Sequential
from tensorflow.python.keras._impl.keras.optimizers import rmsprop
from tensorflow.python.saved_model.signature_constants import PREDICT_INPUTS

HEIGHT = 32
WIDTH = 32
DEPTH = 3
NUM_CLASSES = 10
NUM_DATA_BATCHES = 5
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 10000 * NUM_DATA_BATCHES
BATCH_SIZE = 1


def keras_model_fn(hyperparameters):
"""keras_model_fn receives hyperparameters from the training job and returns a compiled keras model.
The model will transformed in a TensorFlow Estimator before training and it will saved in a TensorFlow Serving
SavedModel in the end of training.

Args:
hyperparameters: The hyperparameters passed to SageMaker TrainingJob that runs your TensorFlow training
script.
Returns: A compiled Keras model
"""
model = Sequential()

# TensorFlow Serving default prediction input tensor name is PREDICT_INPUTS. I will keep the same name for the
# InputLayer
model.add(InputLayer(input_shape=(HEIGHT, WIDTH, DEPTH), name=PREDICT_INPUTS))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(NUM_CLASSES))
model.add(Activation('softmax'))

opt = rmsprop(lr=0.0001, decay=1e-6)

model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])

print(model.summary())

return model


def serving_input_fn(hyperparameters):
"""This function defines the placeholders that will be added to the model during serving.
The function returns a tf.estimator.export.ServingInputReceiver object, which packages the placeholders and the
resulting feature Tensors together.

For more information: https://github.com/aws/sagemaker-python-sdk#creating-a-serving_input_fn

Args:
hyperparameters: The hyperparameters passed to SageMaker TrainingJob that runs your TensorFlow training
script.
Returns: ServingInputReceiver or fn that returns a ServingInputReceiver
"""

# Notice that the input placeholder has the same input shape as the Keras model input
tensor = tf.placeholder(tf.float32, shape=[None, HEIGHT, WIDTH, DEPTH])

# the features key PREDICT_INPUTS matches the Keras Input Layer name
features = {PREDICT_INPUTS: tensor}
return build_raw_serving_input_receiver_fn(features)


def train_input_fn(training_dir, hyperparameters):
return _input(tf.estimator.ModeKeys.TRAIN,
batch_size=BATCH_SIZE, data_dir=training_dir)


def eval_input_fn(training_dir, hyperparameters):
return _input(tf.estimator.ModeKeys.EVAL,
batch_size=BATCH_SIZE, data_dir=training_dir)


def _input(mode, batch_size, data_dir):
"""Input_fn using the contrib.data input pipeline for CIFAR-10 dataset.

Args:
mode: Standard names for model modes (tf.estimators.ModeKeys).
batch_size: The number of samples per batch of input requested.
"""
dataset = _record_dataset(_filenames(mode, data_dir))

# For training repeat forever.
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.repeat()

dataset = dataset.map(_dataset_parser, num_threads=1,
output_buffer_size=2 * batch_size)

# For training, preprocess the image and shuffle.
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.map(_train_preprocess_fn, num_threads=1,
output_buffer_size=2 * batch_size)

# Ensure that the capacity is sufficiently large to provide good random
# shuffling.
buffer_size = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size
dataset = dataset.shuffle(buffer_size=buffer_size)

# Subtract off the mean and divide by the variance of the pixels.
dataset = dataset.map(
lambda image, label: (tf.image.per_image_standardization(image), label),
num_threads=1,
output_buffer_size=2 * batch_size)

# Batch results by up to batch_size, and then fetch the tuple from the
# iterator.
iterator = dataset.batch(batch_size).make_one_shot_iterator()
images, labels = iterator.get_next()

return {PREDICT_INPUTS: images}, labels


def _train_preprocess_fn(image, label):
"""Preprocess a single training image of layout [height, width, depth]."""
# Resize the image to add four extra pixels on each side.
image = tf.image.resize_image_with_crop_or_pad(image, HEIGHT + 8, WIDTH + 8)

# Randomly crop a [HEIGHT, WIDTH] section of the image.
image = tf.random_crop(image, [HEIGHT, WIDTH, DEPTH])

# Randomly flip the image horizontally.
image = tf.image.random_flip_left_right(image)

return image, label


def _dataset_parser(value):
"""Parse a CIFAR-10 record from value."""
# Every record consists of a label followed by the image, with a fixed number
# of bytes for each.
label_bytes = 1
image_bytes = HEIGHT * WIDTH * DEPTH
record_bytes = label_bytes + image_bytes

# Convert from a string to a vector of uint8 that is record_bytes long.
raw_record = tf.decode_raw(value, tf.uint8)

# The first byte represents the label, which we convert from uint8 to int32.
label = tf.cast(raw_record[0], tf.int32)

# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(raw_record[label_bytes:record_bytes],
[DEPTH, HEIGHT, WIDTH])

# Convert from [depth, height, width] to [height, width, depth], and cast as
# float32.
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

return image, tf.one_hot(label, NUM_CLASSES)


def _record_dataset(filenames):
"""Returns an input pipeline Dataset from `filenames`."""
record_bytes = HEIGHT * WIDTH * DEPTH + 1
return tf.contrib.data.FixedLengthRecordDataset(filenames, record_bytes)


def _filenames(mode, data_dir):
"""Returns a list of filenames based on 'mode'."""
data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')

assert os.path.exists(data_dir), ('Run cifar10_download_and_extract.py first '
'to download and extract the CIFAR-10 data.')

if mode == tf.estimator.ModeKeys.TRAIN:
return [
os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in range(1, NUM_DATA_BATCHES + 1)
]
elif mode == tf.estimator.ModeKeys.EVAL:
return [os.path.join(data_dir, 'test_batch.bin')]
else:
raise ValueError('Invalid mode: %s' % mode)
Loading