Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[numpy] FFI binary bitwise ops #17812

Merged
merged 2 commits into from
Apr 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions benchmark/python/ffi/benchmark_ffi.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,13 @@ def prepare_workloads():
OpArgMngr.add_workload("full_like", pool['2x2'], 2)
OpArgMngr.add_workload("zeros_like", pool['2x2'])
OpArgMngr.add_workload("ones_like", pool['2x2'])
OpArgMngr.add_workload("bitwise_and", pool['2x2'].astype(int), pool['2x2'].astype(int))
OpArgMngr.add_workload("bitwise_xor", pool['2x2'].astype(int), pool['2x2'].astype(int))
OpArgMngr.add_workload("bitwise_or", pool['2x2'].astype(int), pool['2x2'].astype(int))
OpArgMngr.add_workload("copysign", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("arctan2", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("hypot", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("ldexp", pool['2x2'].astype(int), pool['2x2'].astype(int))
OpArgMngr.add_workload("random.uniform", low=0, high=1, size=1)
OpArgMngr.add_workload("where", pool['2x3'], pool['2x3'], pool['2x1'])
OpArgMngr.add_workload("fmax", pool['2x2'], pool['2x2'])
Expand Down
29 changes: 21 additions & 8 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -5052,7 +5052,9 @@ def copysign(x1, x2, out=None, **kwargs):
>>> np.copysign(a, np.arange(3)-1)
array([-1., 0., 1.])
"""
return _ufunc_helper(x1, x2, _npi.copysign, _np.copysign, _npi.copysign_scalar, _npi.rcopysign_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.copysign(x1, x2, out=out)
return _api_internal.copysign(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -5808,8 +5810,9 @@ def arctan2(x1, x2, out=None, **kwargs):
>>> np.arctan2(x, y)
array([ 1.5707964, -1.5707964])
"""
return _ufunc_helper(x1, x2, _npi.arctan2, _np.arctan2,
_npi.arctan2_scalar, _npi.rarctan2_scalar, out=out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.arctan2(x1, x2, out=out)
return _api_internal.arctan2(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -5857,7 +5860,9 @@ def hypot(x1, x2, out=None, **kwargs):
[ 5., 5., 5.],
[ 5., 5., 5.]])
"""
return _ufunc_helper(x1, x2, _npi.hypot, _np.hypot, _npi.hypot_scalar, None, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.hypot(x1, x2, out=out)
return _api_internal.hypot(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -5897,7 +5902,9 @@ def bitwise_and(x1, x2, out=None, **kwargs):
>>> np.bitwise_and(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool'))
array([False, True])
"""
return _ufunc_helper(x1, x2, _npi.bitwise_and, _np.bitwise_and, _npi.bitwise_and_scalar, None, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.bitwise_and(x1, x2, out=out)
return _api_internal.bitwise_and(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -5935,7 +5942,9 @@ def bitwise_xor(x1, x2, out=None, **kwargs):
>>> np.bitwise_xor(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool'))
array([ True, False])
"""
return _ufunc_helper(x1, x2, _npi.bitwise_xor, _np.bitwise_xor, _npi.bitwise_xor_scalar, None, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.bitwise_xor(x1, x2, out=out)
return _api_internal.bitwise_xor(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -5973,7 +5982,9 @@ def bitwise_or(x1, x2, out=None, **kwargs):
>>> np.bitwise_or(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool'))
array([ True, True])
"""
return _ufunc_helper(x1, x2, _npi.bitwise_or, _np.bitwise_or, _npi.bitwise_or_scalar, None, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.bitwise_or(x1, x2, out=out)
return _api_internal.bitwise_or(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -6012,7 +6023,9 @@ def ldexp(x1, x2, out=None, **kwargs):
>>> np.ldexp(5, np.arange(4))
array([ 5., 10., 20., 40.])
"""
return _ufunc_helper(x1, x2, _npi.ldexp, _np.ldexp, _npi.ldexp_scalar, _npi.rldexp_scalar, out)
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.ldexp(x1, x2, out=out)
return _api_internal.ldexp(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
Expand Down
59 changes: 59 additions & 0 deletions src/api/operator/numpy/np_elemwise_broadcast_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -88,4 +88,63 @@ MXNET_REGISTER_API("_npi.lcm")
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

Yiyan66 marked this conversation as resolved.
Show resolved Hide resolved
MXNET_REGISTER_API("_npi.bitwise_or")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_bitwise_or");
const nnvm::Op* op_scalar = Op::Get("_npi_bitwise_or_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.bitwise_xor")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_bitwise_xor");
const nnvm::Op* op_scalar = Op::Get("_npi_bitwise_xor_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.bitwise_and")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_bitwise_and");
const nnvm::Op* op_scalar = Op::Get("_npi_bitwise_and_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.copysign")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_copysign");
const nnvm::Op* op_scalar = Op::Get("_npi_copysign_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rcopysign_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.arctan2")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_arctan2");
const nnvm::Op* op_scalar = Op::Get("_npi_arctan2_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rarctan2_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

MXNET_REGISTER_API("_npi.hypot")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_hypot");
const nnvm::Op* op_scalar = Op::Get("_npi_hypot_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.ldexp")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_ldexp");
const nnvm::Op* op_scalar = Op::Get("_npi_ldexp_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rldexp_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

} // namespace mxnet