Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[Numpy] Add op fmax, fmin, fmod #17567

Merged
merged 7 commits into from
Mar 23, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions benchmark/python/ffi/benchmark_ffi.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,9 @@ def prepare_workloads():
OpArgMngr.add_workload("ones_like", pool['2x2'])
OpArgMngr.add_workload("random.uniform", low=0, high=1, size=1)
OpArgMngr.add_workload("where", pool['2x3'], pool['2x3'], pool['2x1'])
OpArgMngr.add_workload("fmax", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("fmin", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("fmod", pool['2x2'], pool['2x2'])
OpArgMngr.add_workload("may_share_memory", pool['2x3'][:0], pool['2x3'][:1])


Expand Down
76 changes: 74 additions & 2 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,15 +30,16 @@


__all__ = ['shape', 'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'empty_like', 'invert', 'delete',
'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'bitwise_not',
'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod',
'power', 'bitwise_not',
'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'insert', 'fabs',
'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'matmul',
'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', 'histogram',
'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'argsort', 'all', 'any', 'sort',
'tensordot', 'eye', 'linspace',
'logspace', 'expand_dims', 'tile', 'arange', 'array_split', 'split', 'hsplit', 'vsplit', 'dsplit',
'concatenate', 'append', 'stack', 'vstack', 'row_stack', 'column_stack', 'hstack', 'dstack',
'average', 'mean', 'maximum', 'minimum', 'around', 'round', 'round_', 'flatnonzero',
'average', 'mean', 'maximum', 'fmax', 'minimum', 'fmin', 'around', 'round', 'round_', 'flatnonzero',
'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'indices', 'copysign', 'ravel', 'unravel_index',
'diag_indices_from', 'hanning', 'hamming', 'blackman', 'flip', 'flipud', 'fliplr',
'hypot', 'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad', 'unique', 'lcm',
Expand Down Expand Up @@ -1169,6 +1170,35 @@ def mod(x1, x2, out=None, **kwargs):
return _api_internal.mod(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def fmod(x1, x2, out=None, **kwargs):
"""
Return element-wise remainder of division.

Parameters
----------
x1 : ndarray or scalar
Dividend array.

x2 : ndarray or scalar
Divisor array.

out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.

Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
_np.fmod(x1, x2, out=out)
return _api_internal.fmod(x1, x2, out)

hanke580 marked this conversation as resolved.
Show resolved Hide resolved

@set_module('mxnet.ndarray.numpy')
def delete(arr, obj, axis=None):
"""
Expand Down Expand Up @@ -4366,6 +4396,27 @@ def maximum(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.maximum, _np.maximum, _npi.maximum_scalar, None, out)


@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def fmax(x1, x2, out=None, **kwargs):
"""
Returns element-wise maximum of the input arrays with broadcasting. (Ignores NaNs)

Parameters
----------
x1, x2 : scalar or mxnet.numpy.ndarray
The arrays holding the elements to be compared. They must have the same shape,
or shapes that can be broadcast to a single shape.

Returns
-------
out : mxnet.numpy.ndarray or scalar
The maximum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars."""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
_np.fmax(x1, x2, out=out)
return _api_internal.fmax(x1, x2, out)

hanke580 marked this conversation as resolved.
Show resolved Hide resolved

@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def minimum(x1, x2, out=None, **kwargs):
Expand All @@ -4385,6 +4436,27 @@ def minimum(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.minimum, _np.minimum, _npi.minimum_scalar, None, out)


@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def fmin(x1, x2, out=None, **kwargs):
"""
Returns element-wise minimum of the input arrays with broadcasting. (Ignores NaNs)

Parameters
----------
x1, x2 : scalar or mxnet.numpy.ndarray
The arrays holding the elements to be compared. They must have the same shape,
or shapes that can be broadcast to a single shape.

Returns
-------
out : mxnet.numpy.ndarray or scalar
The minimum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars."""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
_np.fmin(x1, x2, out=out)
return _api_internal.fmin(x1, x2, out)


@set_module('mxnet.ndarray.numpy')
def swapaxes(a, axis1, axis2):
"""Interchange two axes of an array.
Expand Down
96 changes: 94 additions & 2 deletions python/mxnet/numpy/multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,15 +53,17 @@

__all__ = ['ndarray', 'empty', 'empty_like', 'array', 'shape',
'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'all', 'any', 'broadcast_to',
'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'bitwise_not', 'delete',
'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod', 'power', 'bitwise_not',
'delete',
'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'invert',
'sqrt', 'cbrt', 'abs', 'absolute', 'fabs', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log',
'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'histogram',
'fix', 'ceil', 'floor', 'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'append', 'argsort',
'sort', 'tensordot', 'eye', 'linspace', 'logspace', 'expand_dims', 'tile', 'arange',
'array_split', 'split', 'hsplit', 'vsplit', 'dsplit', 'flatnonzero',
'concatenate', 'stack', 'vstack', 'row_stack', 'column_stack', 'hstack', 'dstack',
'average', 'mean', 'maximum', 'minimum', 'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'insert',
'average', 'mean', 'maximum', 'fmax', 'minimum', 'fmin',
'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'insert',
'indices', 'copysign', 'ravel', 'unravel_index', 'diag_indices_from', 'hanning', 'hamming', 'blackman',
'flip', 'flipud', 'fliplr', 'around', 'round', 'round_', 'arctan2', 'hypot',
'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad',
Expand Down Expand Up @@ -3147,6 +3149,38 @@ def mod(x1, x2, out=None, **kwargs):
return _mx_nd_np.mod(x1, x2, out=out)


@set_module('mxnet.numpy')
@wrap_np_binary_func
def fmod(x1, x2, out=None, **kwargs):
"""
Return element-wise remainder of division.

Parameters
----------
x1 : ndarray or scalar
Dividend array.

x2 : ndarray or scalar
Divisor array.

out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.

Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.

Examples
--------
>>> np.fmod(np.arange(7), 5)
array([0., 1., 2., 3., 4., 0., 1.])
"""
return _mx_nd_np.fmod(x1, x2, out=out)


@set_module('mxnet.numpy')
@wrap_np_binary_func
def matmul(a, b, out=None, **kwargs):
Expand Down Expand Up @@ -6185,6 +6219,35 @@ def maximum(x1, x2, out=None, **kwargs):
return _mx_nd_np.maximum(x1, x2, out=out)


@set_module('mxnet.numpy')
@wrap_np_binary_func
def fmax(x1, x2, out=None, **kwargs):
"""
Returns element-wise maximum of the input arrays with broadcasting. (Ignores NaNs)

Parameters
----------
x1, x2 : scalar or mxnet.numpy.ndarray
The arrays holding the elements to be compared. They must have the same shape,
or shapes that can be broadcast to a single shape.

Returns
-------
out : mxnet.numpy.ndarray or scalar
The maximum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.

Examples
--------
>>> np.fmax(np.array([2, 3, 4]), np.array([1, 5, 2]))
array([2., 5., 4.])

>>> np.fmax(np.eye(2), np.array([0.5, 2])) # broadcasting
array([[1. , 2. ],
[0.5, 2. ]])
"""
return _mx_nd_np.fmax(x1, x2, out=out)


@set_module('mxnet.numpy')
@wrap_np_binary_func
def minimum(x1, x2, out=None, **kwargs):
Expand Down Expand Up @@ -6214,6 +6277,35 @@ def minimum(x1, x2, out=None, **kwargs):
return _mx_nd_np.minimum(x1, x2, out=out)


@set_module('mxnet.numpy')
@wrap_np_binary_func
def fmin(x1, x2, out=None, **kwargs):
"""
Returns element-wise minimum of the input arrays with broadcasting. (Ignores NaNs)

Parameters
----------
x1, x2 : scalar or mxnet.numpy.ndarray
The arrays holding the elements to be compared. They must have the same shape,
or shapes that can be broadcast to a single shape.

Returns
-------
out : mxnet.numpy.ndarray or scalar
The fmin of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.

Examples
--------
>>> np.fmin(np.array([2, 3, 4]), np.array([1, 5, 2]))
array([1., 3., 2.])

>>> np.fmin(np.eye(2), np.array([0.5, 2])) # broadcasting
array([[0.5, 0. ],
[0. , 1. ]])
"""
return _mx_nd_np.fmin(x1, x2, out=out)


@set_module('mxnet.numpy')
def swapaxes(a, axis1, axis2):
"""Interchange two axes of an array.
Expand Down
3 changes: 3 additions & 0 deletions python/mxnet/numpy_dispatch_protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,6 +248,7 @@ def _register_array_function():
'negative',
'power',
'mod',
'fmod',
'matmul',
'absolute',
'rint',
Expand Down Expand Up @@ -277,7 +278,9 @@ def _register_array_function():
'arccosh',
'arctanh',
'maximum',
'fmax',
'minimum',
'fmin',
'ceil',
'trunc',
'floor',
Expand Down
24 changes: 22 additions & 2 deletions python/mxnet/symbol/numpy/_symbol.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,16 @@
from builtins import slice as py_slice

__all__ = ['zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'empty_like', 'bitwise_not', 'invert',
'delete', 'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'arctan2',
'delete', 'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod',
'power', 'arctan2',
'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'absolute', 'fabs', 'exp',
'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'matmul',
'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', 'histogram', 'insert',
'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'argsort', 'sort', 'tensordot', 'eye', 'linspace',
'logspace', 'expand_dims', 'tile', 'arange', 'array_split', 'split', 'hsplit', 'vsplit', 'dsplit',
'concatenate', 'append', 'stack', 'vstack', 'row_stack', 'column_stack', 'hstack', 'dstack',
'average', 'mean', 'maximum', 'minimum', 'any', 'all', 'around', 'round', 'round_', 'flatnonzero',
'average', 'mean', 'maximum', 'fmax', 'minimum', 'fmin', 'any', 'all', 'around', 'round', 'round_',
'flatnonzero',
'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'indices', 'copysign', 'ravel', 'unravel_index',
'diag_indices_from', 'hanning', 'hamming', 'blackman', 'flip', 'flipud', 'fliplr',
'hypot', 'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad', 'unique', 'lcm',
Expand Down Expand Up @@ -1620,6 +1622,12 @@ def mod(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.mod, _np.mod, _npi.mod_scalar, _npi.rmod_scalar, out)


@set_module('mxnet.symbol.numpy')
@wrap_np_binary_func
def fmod(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.fmod, _np.fmod, _npi.fmod_scalar, _npi.rfmod_scalar, out)


@set_module('mxnet.symbol.numpy')
@wrap_np_binary_func
def remainder(x1, x2, out=None, **kwargs):
Expand Down Expand Up @@ -4127,12 +4135,24 @@ def maximum(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.maximum, _np.maximum, _npi.maximum_scalar, None, out)


@set_module('mxnet.symbol.numpy')
@wrap_np_binary_func
def fmax(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.fmax, _np.fmax, _npi.fmax_scalar, None, out)


@set_module('mxnet.symbol.numpy')
@wrap_np_binary_func
def minimum(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.minimum, _np.minimum, _npi.minimum_scalar, None, out)


@set_module('mxnet.symbol.numpy')
@wrap_np_binary_func
def fmin(x1, x2, out=None, **kwargs):
return _ufunc_helper(x1, x2, _npi.fmin, _np.fmin, _npi.fmin_scalar, None, out)


@set_module('mxnet.symbol.numpy')
def all(a, axis=None, out=None, keepdims=False):
"""
Expand Down
56 changes: 56 additions & 0 deletions src/api/operator/numpy/np_elemwise_broadcast_op_extended_sec.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file np_elemwise_broadcast_op_extended_sec.cc
* \brief Implementation of the API of functions in src/operator/numpy/np_elemwise_broadcast_op_extended_sec.cc
*/
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include "../utils.h"
#include "../ufunc_helper.h"

namespace mxnet {

MXNET_REGISTER_API("_npi.fmax")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_fmax");
const nnvm::Op* op_scalar = Op::Get("_npi_fmax_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.fmin")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_fmin");
const nnvm::Op* op_scalar = Op::Get("_npi_fmin_scalar");
UFuncHelper(args, ret, op, op_scalar, nullptr);
});

MXNET_REGISTER_API("_npi.fmod")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_fmod");
const nnvm::Op* op_scalar = Op::Get("_npi_fmod_scalar");
const nnvm::Op* op_rscalar = Op::Get("_npi_rfmod_scalar");
UFuncHelper(args, ret, op, op_scalar, op_rscalar);
});

} // namespace mxnet
Loading