【WSDM-2019 SimGNN】SimGNN: A Neural Network Approach to Fast Graph Similarity Computation
python main.py --exp_name=SimGNN
Parameter | Value |
---|---|
Batch size | 16 |
Bins | 16 |
Bottle neck neurons | 16 |
Dropout | 0.5 |
Epochs | 5 |
Exp name | SimGNN |
Filters 1 | 128 |
Filters 2 | 64 |
Filters 3 | 32 |
Gpu index | 0 |
Histogram | True |
Learning rate | 0.001 |
Seed | 16 |
Tensor neurons | 16 |
Weight decay | 0.0005 |

Code Framework Reference: SimGNN