-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
157 lines (116 loc) · 5.98 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author: XiaShan
@Contact: [email protected]
@Time: 2024/3/23 21:18
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class AttentionModule(nn.Module):
"图嵌入注意力模块"
def __init__(self, args):
super(AttentionModule, self).__init__()
self.args = args
self.setup_weights()
self.init_parameters()
def setup_weights(self):
self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3))
def init_parameters(self):
nn.init.xavier_uniform_(self.weight_matrix)
def forward(self, embedding):
# embedding:(num_nodes=14, num_features=32)
# 在每个特征维度上,取节点平均值
# global_context:(32)
global_context = torch.mean(torch.matmul(embedding, self.weight_matrix), dim=0)
transformed_global = torch.tanh(global_context)
# sigmoid_scores计算每个节点与图之间的相似性得分(注意力)
# sigmoid_scores:(14)
sigmoid_scores = torch.sigmoid(torch.mm(embedding, transformed_global.view(-1, 1)))
# representation:图的嵌入(32)
representation = torch.mm(torch.t(embedding), sigmoid_scores)
return representation
class TensorNetworkModule(nn.Module):
"Neural Tensor Network"
def __init__(self, args):
super(TensorNetworkModule, self).__init__()
self.args = args
self.setup_weights()
self.init_parameters()
def setup_weights(self):
self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3, self.args.tensor_neurons))
self.weight_matrix_block = nn.Parameter(torch.Tensor(self.args.tensor_neurons, 2*self.args.filters_3))
self.bias = nn.Parameter(torch.Tensor(self.args.tensor_neurons, 1))
def init_parameters(self):
nn.init.xavier_uniform_(self.weight_matrix)
nn.init.xavier_uniform_(self.weight_matrix_block)
nn.init.xavier_uniform_(self.bias)
def forward(self, embedding_1, embedding_2):
scoring = torch.mm(torch.t(embedding_1), self.weight_matrix.view(self.args.filters_3, -1))
scoring = scoring.view(self.args.filters_3, self.args.tensor_neurons) # shape(32, 16)
scoring = torch.mm(torch.t(scoring), embedding_2) # shape(16, 1)
# combined_representation:shape(64, 1)
combined_representation = torch.cat((embedding_1, embedding_2))
# block_scoring:shape(16, 1)
block_scoring = torch.mm(self.weight_matrix_block, combined_representation)
scores = F.relu(scoring + block_scoring + self.bias)
return scores
class SimGNN(nn.Module):
def __init__(self, args, num_nodes_id):
super(SimGNN, self).__init__()
self.args = args
self.num_nodes_id = num_nodes_id
self.setup_layers()
def calculate_bottleneck_features(self):
if self.args.histogram == True:
self.feature_count = self.args.tensor_neurons + self.args.bins
else:
self.feature_count = self.args.tensor_neurons
def setup_layers(self):
self.calculate_bottleneck_features()
self.convolution_1 = GCNConv(self.num_nodes_id, self.args.filters_1)
self.convolution_2 = GCNConv(self.args.filters_1, self.args.filters_2)
self.convolution_3 = GCNConv(self.args.filters_2, self.args.filters_3)
self.attention = AttentionModule(self.args)
self.tensor_network = TensorNetworkModule(self.args)
self.fully_connected_first = nn.Linear(self.feature_count, self.args.bottle_neck_neurons)
self.scoring_layer = nn.Linear(self.args.bottle_neck_neurons, 1)
def calculate_histogram(self, abstract_features_1, abstract_features_2):
"Pairwise Node Comparison"
# abstract_features_1:(num_nodes1, num_features=32)
# abstract_features_2:(num_features=32, num_nodes2)
scores = torch.mm(abstract_features_1, abstract_features_2).detach()
scores = scores.view(-1, 1)
hist = torch.histc(scores, bins=self.args.bins) # 统计得分在每个区间的个数
hist = hist/torch.sum(hist) # 归一化
hist = hist.view(1, -1)
return hist
def convolutional_pass(self, edge_index, features):
features = self.convolution_1(features, edge_index)
features = F.relu(features)
features = F.dropout(features, p=self.args.dropout, training=self.training)
features = self.convolution_2(features, edge_index)
features = F.relu(features)
features = F.dropout(features, p=self.args.dropout, training=self.training)
features = self.convolution_3(features, edge_index)
return features
def forward(self, data):
edge_index_1 = data["edge_index_1"]
edge_index_2 = data["edge_index_2"]
features_1 = data["features_1"] # (num_nodes1, num_features=16)
features_2 = data["features_2"] # (num_nodes2, num_features=16)
abstract_features_1 = self.convolutional_pass(edge_index_1, features_1) # (num_nodes1, num_features=16) ——> (num_nodes1, num_features=32)
abstract_features_2 = self.convolutional_pass(edge_index_2, features_2) # (num_nodes2, num_features=16) ——> (num_nodes2, num_features=32)
if self.args.histogram == True:
hist = self.calculate_histogram(abstract_features_1, torch.t(abstract_features_2))
pooled_features_1 = self.attention(abstract_features_1) # (num_nodes1, num_features=32) ——> (num_features=32)
pooled_features_2 = self.attention(abstract_features_2) # (num_nodes2, num_features=32) ——> (num_features=32)
scores = self.tensor_network(pooled_features_1, pooled_features_2)
scores = torch.t(scores)
if self.args.histogram == True:
scores = torch.cat((scores, hist), dim=1).view(1, -1)
scores = F.relu(self.fully_connected_first(scores))
score = torch.sigmoid(self.scoring_layer(scores))
return score