Skip to content

Commit

Permalink
more about Prokhorov's theorem
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Dec 31, 2023
1 parent fe5a93e commit 299a5b3
Showing 1 changed file with 15 additions and 2 deletions.
17 changes: 15 additions & 2 deletions blueprint/src/chapter/tight.tex
Original file line number Diff line number Diff line change
Expand Up @@ -34,15 +34,21 @@ \chapter{Tight families of measures}

\end{proof}

\begin{lemma}\label{tight_closure}
\uses{def:tight}
The closure of a tight set of measures is tight.
\end{lemma}

\begin{proof}
\end{proof}

\section{Prokhorov's theorem}

\begin{lemma}\label{lem:exists_finite_union_inter_lt}
Let $(U_n)_{n \in \mathbb{N}}$ be measurable sets such that $\bigcap_{n=1}^{+ \infty} U_n = \emptyset$. Let $\mu$ be a measure and let $\varepsilon > 0$. Then there exists a finite set $S \subseteq \mathbb{N}$ such that $\mu(\bigcap_{n \in S} U_n) < \varepsilon$.
Let $(U_n)_{n \in \mathbb{N}}$ be open sets in a complete separable metric space $E$ such that $\bigcup_{n=1}^{+ \infty} U_n = E$. Let $\Gamma$ be a relatively compact set of probability measures on $E$ for the topology of weak convergence of measures. Then for all $\varepsilon > 0$ there exists a finite set $S \subseteq \mathbb{N}$ such that for all $\mu \in \Gamma$, $\mu(\bigcup_{n \in S} U_n) > 1 - \varepsilon$.
\end{lemma}

\begin{proof}
Rémy: I have a proof of that result in the project formalizing Kolmogorov's extension theorem (joint work with Peter Pfaffelhuber).
\end{proof}

\begin{lemma}\label{lem:prokhorov_aux1}
Expand All @@ -52,6 +58,13 @@ \section{Prokhorov's theorem}
\begin{proof}\uses{lem:exists_finite_union_inter_lt}
\end{proof}

\begin{lemma}\label{ProbabilityMeasure_compact}
If $E$ is a compact metric space, then $\mathcal P(X)$ with the Prokhorov metric is a compact metric space.
\end{lemma}

\begin{proof}
\end{proof}

\begin{theorem}[Prokhorov's theorem]\label{thm:prokhorov}
\uses{def:tight}
Let $E$ be a complete separable metric space and let $S \subseteq \mathcal P(E)$. Then the following are equivalent:
Expand Down

0 comments on commit 299a5b3

Please sign in to comment.