Skip to content

Commit

Permalink
add details for one direction in prokhorov's thm
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Dec 31, 2023
1 parent 78bc0c7 commit fe5a93e
Showing 1 changed file with 20 additions and 2 deletions.
22 changes: 20 additions & 2 deletions blueprint/src/chapter/tight.tex
Original file line number Diff line number Diff line change
Expand Up @@ -37,17 +37,35 @@ \chapter{Tight families of measures}

\section{Prokhorov's theorem}

\begin{lemma}\label{lem:exists_finite_union_inter_lt}
Let $(U_n)_{n \in \mathbb{N}}$ be measurable sets such that $\bigcap_{n=1}^{+ \infty} U_n = \emptyset$. Let $\mu$ be a measure and let $\varepsilon > 0$. Then there exists a finite set $S \subseteq \mathbb{N}$ such that $\mu(\bigcap_{n \in S} U_n) < \varepsilon$.
\end{lemma}

\begin{proof}
Rémy: I have a proof of that result in the project formalizing Kolmogorov's extension theorem (joint work with Peter Pfaffelhuber).
\end{proof}

\begin{lemma}\label{lem:prokhorov_aux1}
Let $E$ be a complete separable metric space and let $S \subseteq \mathcal P(E)$. If the closure of $S$ is compact, then $S$ is tight.
\end{lemma}

\begin{proof}\uses{lem:exists_finite_union_inter_lt}
\end{proof}

\begin{theorem}[Prokhorov's theorem]\label{thm:prokhorov}
\uses{def:tight}
Let $E$ be a complete separable metric space and let $S \subseteq \mathcal P(E)$. Then the following are equivalent:
\begin{enumerate}
\item $S$ is tight.
\item For all $\varepsilon > 0$ there exists a compact set $K$ such that for all $\mu \in S$, $\mu((K^\varepsilon)^c) \le \varepsilon$, where $K^\varepsilon$ is the $\varepsilon$-thickening of $K$.
%\item For all $\varepsilon > 0$ there exists a compact set $K$ such that for all $\mu \in S$, $\mu((K^\varepsilon)^c) \le \varepsilon$, where $K^\varepsilon$ is the $\varepsilon$-thickening of $K$.
\item the closure of $S$ is compact.
\end{enumerate}
\end{theorem}

\begin{proof}
\begin{proof}\uses{lem:prokhorov_aux1}
Lemma~\ref{lem:prokhorov_aux1} provides one direction.

TODO: proof of the other one.
\end{proof}

\begin{lemma}\label{lem:relatively_compact_of_tight}
Expand Down

0 comments on commit fe5a93e

Please sign in to comment.