forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* tests: add integration tests for new Bort model * bort: add conversion script from Gluonnlp to Transformers 🚀 * bort: minor cleanup (BORT -> Bort) * add docs * make fix-copies * clean doc a bit * correct docs * Update docs/source/model_doc/bort.rst Co-authored-by: Sylvain Gugger <[email protected]> * Update docs/source/model_doc/bort.rst Co-authored-by: Sylvain Gugger <[email protected]> * correct dialogpt doc * correct link * Update docs/source/model_doc/bort.rst * Update docs/source/model_doc/dialogpt.rst Co-authored-by: Patrick von Platen <[email protected]> * make style Co-authored-by: Patrick von Platen <[email protected]> Co-authored-by: Sylvain Gugger <[email protected]>
- Loading branch information
Showing
7 changed files
with
505 additions
and
36 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
.. | ||
Copyright 2020 The HuggingFace Team. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | ||
the License. You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | ||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
specific language governing permissions and limitations under the License. | ||
|
||
BORT | ||
----------------------------------------------------------------------------------------------------------------------- | ||
|
||
Overview | ||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
||
The BORT model was proposed in `Optimal Subarchitecture Extraction for BERT <https://arxiv.org/abs/2010.10499>`__ by | ||
Adrian de Wynter and Daniel J. Perry. It is an optimal subset of architectural parameters for the BERT, which the | ||
authors refer to as "Bort". | ||
|
||
The abstract from the paper is the following: | ||
|
||
*We extract an optimal subset of architectural parameters for the BERT architecture from Devlin et al. (2018) by | ||
applying recent breakthroughs in algorithms for neural architecture search. This optimal subset, which we refer to as | ||
"Bort", is demonstrably smaller, having an effective (that is, not counting the embedding layer) size of 5.5% the | ||
original BERT-large architecture, and 16% of the net size. Bort is also able to be pretrained in 288 GPU hours, which | ||
is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large | ||
(Liu et al., 2019), and about 33% of that of the world-record, in GPU hours, required to train BERT-large on the same | ||
hardware. It is also 7.9x faster on a CPU, as well as being better performing than other compressed variants of the | ||
architecture, and some of the non-compressed variants: it obtains performance improvements of between 0.3% and 31%, | ||
absolute, with respect to BERT-large, on multiple public natural language understanding (NLU) benchmarks.* | ||
|
||
Tips: | ||
|
||
- BORT's model architecture is based on BERT, so one can refer to :doc:`BERT's documentation page <bert>` for the | ||
model's API as well as usage examples. | ||
- BORT uses the RoBERTa tokenizer instead of the BERT tokenizer, so one can refer to :doc:`RoBERTa's documentation page | ||
<roberta>` for the tokenizer's API as well as usage examples. | ||
- BORT requires a specific fine-tuning algorithm, called `Agora | ||
<https://adewynter.github.io/notes/bort_algorithms_and_applications.html#fine-tuning-with-algebraic-topology>`__ , | ||
that is sadly not open-sourced yet. It would be very useful for the community, if someone tries to implement the | ||
algorithm to make BORT fine-tuning work. | ||
|
||
The original code can be found `here <https://github.com/alexa/bort/>`__. |
Oops, something went wrong.