STCLoc: Deep LiDAR Localization with Spatio-Temporal Constraints
-
python 3.6.13
-
pytorch 1.7.0
We support the Oxford Radar RobotCar and vReLoc datasets right now.
Oxford data_root
├── 2019-01-11-14-02-26-radar-oxford-10k
│ ├── velodyne_left
│ ├── xxx.bin
├── pose_stats.txt
├── pose_max_min.txt
├── train_split.txt
├── test_split.txt
- train -- 2 GPUs
python train.py --gpu_id 0 --batch_size 80 --val_batch_size 80 --decay_step 500 --log_dir log-oxford/ --dataset Oxford --num_loc 10 --num_ang 10 --skip 2
- test -- 1 GPU
python eval.py --gpu_id 0 --val_batch_size 40 --log_dir log-oxford/ --dataset Oxford --num_loc 10 --num_ang 10 --skip 2 --resume_model checkpoint_epochxx.tar
- train -- 1 GPU
python train.py --gpu_id 0 --batch_size 40 --val_batch_size 40 --decay_step 25 --log_dir log-vreloc/ --dataset vReLoc --num_loc 2 --num_ang 10 --skip 0
- test -- 1 GPU
python eval.py --gpu_id 0 --val_batch_size 40 --log_dir log-vreloc/ --dataset vReLoc --num_loc 2 --num_ang 10 --skip 0 --resume_model checkpoint_epochxx.tar
We appreciate the code of PointNet++ and AtLoc they shared.
@ARTICLE{9928031,
author={Yu, Shangshu and Wang, Cheng and Lin, Yitai and Wen, Chenglu and Cheng, Ming and Hu, Guosheng},
journal={IEEE Transactions on Intelligent Transportation Systems},
title={STCLoc: Deep LiDAR Localization With Spatio-Temporal Constraints},
year={2023},
volume={24},
number={1},
pages={489-500},
doi={10.1109/TITS.2022.3213311}}