-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
280 lines (249 loc) · 12 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# pylint: disable=no-member
import argparse
import os
import sys
import numpy as np
import random
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from data.OxfordVelodyne_datagenerator import RobotCar
from data.vReLoc_datagenerator import vReLoc
from data.composition import MF
from data.augment import get_augmentations_from_list, Normalize
from models.model import STCLoc
from utils.pose_util import val_translation, val_rotation, val_classification, qexp
from tensorboardX import SummaryWriter
from torch.backends import cudnn
from torch.utils.data import DataLoader
from os import path as osp
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
cudnn.enabled = True
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_id', type=int, default=0,
help='gpu id for network, only effective when multi_gpus is false')
parser.add_argument('--val_batch_size', type=int, default=1,
help='Batch Size during validating [default: 80]')
parser.add_argument('--seed', type=int, default=20, metavar='S',
help='random seed (default: 20)')
parser.add_argument('--log_dir', default='/home/data/yss/TITS/STCLoc-github/log-oxford/',
help='Log dir [default: log]')
parser.add_argument('--dataset_folder', default='/home/data',
help='Our Dataset Folder')
parser.add_argument('--dataset', default='Oxford',
help='Oxford or vReLoc')
parser.add_argument('--num_workers', type=int, default=8,
help='num workers for dataloader, default:4')
parser.add_argument('--num_points', type=int, default=4096,
help='Number of points to downsample model to')
parser.add_argument('--upright_axis', type=int, default=2,
help='Will learn invariance along this axis')
parser.add_argument('--num_loc', type=int, default=10,
help='position classification, default: 10')
parser.add_argument('--num_ang', type=int, default=10,
help='orientation classification, default: 10')
parser.add_argument('--skip', type=int, default=2,
help='Number of frames to skip')
parser.add_argument('--steps', type=int, default=3,
help='Number of frames to return on every call')
parser.add_argument('--normalize', action='store_true', default=False,
help='use normalize or not, default not')
parser.add_argument('--real', action='store_true', default=False,
help='if True, load poses from SLAM / integration of VO')
parser.add_argument('--variable_skip', action='store_true', default=False,
help='If True, skip = [1, ..., skip]')
parser.add_argument('--multi_gpus', action='store_true', default=False,
help='if use multi_gpus, default false')
parser.add_argument('--resume_model', type=str, default='checkpoint_epoch34.tar',
help='If present, restore checkpoint and resume training')
FLAGS = parser.parse_args()
args = vars(FLAGS)
for (k, v) in args.items():
print('%s: %s' % (str(k), str(v)))
if not os.path.exists(FLAGS.log_dir):
os.makedirs(FLAGS.log_dir)
LOG_FOUT = open(os.path.join(FLAGS.log_dir, 'log.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')
TOTAL_ITERATIONS = 0
if not FLAGS.multi_gpus:
os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu_id)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
raise ValueError("GPU not found!")
else:
if torch.cuda.is_available():
device = torch.device("cuda")
else:
raise ValueError("GPU not found!")
valid_augmentations = []
if FLAGS.normalize:
if FLAGS.dataset == 'vReLoc':
stats_file = osp.join(FLAGS.dataset_folder, FLAGS.dataset, 'stats.txt')
elif FLAGS.dataset == 'Oxford':
stats_file = osp.join(FLAGS.dataset_folder, FLAGS.dataset, 'stats.txt')
else:
raise ValueError("dataset error!")
stats = np.loadtxt(stats_file, dtype=np.float32)
normalize_aug = Normalize(mean=stats[0], std=np.sqrt(stats[1]))
valid_augmentations.append(normalize_aug)
valid_kwargs = dict(data_path=FLAGS.dataset_folder,
augmentation=valid_augmentations,
num_points=FLAGS.num_points,
train=False,
valid=True,
num_loc=FLAGS.num_loc,
num_ang=FLAGS.num_ang)
pose_stats_file = os.path.join(FLAGS.dataset_folder, FLAGS.dataset, 'pose_stats.txt')
pose_m, pose_s = np.loadtxt(pose_stats_file)
Plus_kwargs = dict(dataset=FLAGS.dataset,
skip=FLAGS.skip,
steps=FLAGS.steps,
variable_skip=FLAGS.variable_skip,
real=FLAGS.real)
valid_kwargs = dict(**valid_kwargs, **Plus_kwargs)
val_set = MF(**valid_kwargs)
val_loader = DataLoader(val_set,
batch_size=FLAGS.val_batch_size,
shuffle=False,
num_workers=FLAGS.num_workers,
pin_memory=True)
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def train():
global TOTAL_ITERATIONS
setup_seed(FLAGS.seed)
val_writer = SummaryWriter(os.path.join(FLAGS.log_dir, 'valid'))
model = STCLoc(FLAGS.steps, FLAGS.num_loc*FLAGS.num_loc, FLAGS.num_ang)
model = model.to(device)
resume_filename = FLAGS.log_dir + FLAGS.resume_model
print("Resuming From ", resume_filename)
checkpoint = torch.load(resume_filename)
saved_state_dict = checkpoint['state_dict']
starting_epoch = checkpoint['epoch'] + 1
model.load_state_dict(saved_state_dict)
if FLAGS.multi_gpus:
model = nn.DataParallel(model)
LOG_FOUT.write("\n")
LOG_FOUT.flush()
log_string('**** EPOCH %03d ****' % starting_epoch)
sys.stdout.flush()
valid_one_epoch(model, val_loader, val_writer, device)
def valid_one_epoch(model, val_loader, val_writer, device):
gt_translation = np.zeros((len(val_set), 3))
pred_translation = np.zeros((len(val_set), 3))
gt_rotation = np.zeros((len(val_set), 4))
pred_rotation = np.zeros((len(val_set), 4))
error_t = np.zeros(len(val_set))
error_q = np.zeros(len(val_set))
correct_loc_results = []
correct_ori_results = []
time_results = []
for step, (val_data, val_pose, val_loc, val_ori) in enumerate(val_loader):
start_idx = step * FLAGS.val_batch_size
end_idx = min((step+1)*FLAGS.val_batch_size, len(val_set))
val_pose = val_pose[:, -1, :]
gt_translation[start_idx:end_idx, :] = val_pose[:, :3].numpy() * pose_s + pose_m
gt_rotation[start_idx:end_idx, :] = np.asarray([qexp(q) for q in val_pose[:, 3:].numpy()])
val_loc = val_loc[:, -1]
val_ori = val_ori[:, -1]
gt_loc = val_loc.to(device, dtype=torch.float32)
gt_ori = val_ori.to(device, dtype=torch.float32)
pcs_tensor = val_data.to(device)
s = pcs_tensor.size() # B, T, N, 3
pcs_tensor = pcs_tensor.view(-1, *s[2:]) # [B*T, N, 3]
# run model and time eval
start = time.time()
pred_t, pred_q, pred_loc, pred_ori = run_model(model, pcs_tensor, validate=True)
end = time.time()
cost_time = end - start
time_results.append(cost_time)
# last frame
pred_t = pred_t.view(s[0], s[1], 3)
pred_q = pred_q.view(s[0], s[1], 3)
pred_t = pred_t[:, -1, :]
pred_q = pred_q[:, -1, :]
pred_loc = pred_loc.view(s[0], s[1], -1)
pred_ori = pred_ori.view(s[0], s[1], -1)
pred_loc = pred_loc[:, -1, :]
pred_ori = pred_ori[:, -1, :]
# RTE / RRE
pred_translation[start_idx:end_idx, :] = pred_t.cpu().numpy() * pose_s + pose_m
pred_rotation[start_idx:end_idx, :] = np.asarray([qexp(q) for q in pred_q.cpu().numpy()])
error_t[start_idx:end_idx] = np.asarray([val_translation(p, q) for p, q in zip(pred_translation[start_idx:end_idx, :], gt_translation[start_idx:end_idx, :])])
error_q[start_idx:end_idx] = np.asarray([val_rotation(p, q) for p, q in zip(pred_rotation[start_idx:end_idx, :], gt_rotation[start_idx:end_idx, :])])
# classification loc and ang
pred_loc_cls = val_classification(pred_loc, gt_loc)
pred_ori_cls = val_classification(pred_ori, gt_ori)
correct_loc_results.append(pred_loc_cls.item()/(end_idx - start_idx))
correct_ori_results.append(pred_ori_cls.item()/(end_idx - start_idx))
log_string('MeanTE(m): %f' % np.mean(error_t[start_idx:end_idx], axis=0))
log_string('MeanRE(degrees): %f' % np.mean(error_q[start_idx:end_idx], axis=0))
log_string('MedianTE(m): %f' % np.median(error_t[start_idx:end_idx], axis=0))
log_string('MedianRE(degrees): %f' % np.median(error_q[start_idx:end_idx], axis=0))
log_string('Cls_loc: %f' % np.mean(correct_loc_results[step]))
log_string('Cls_ori: %f' % np.mean(correct_ori_results[step]))
mean_time = np.mean(time_results)
mean_ATE = np.mean(error_t)
mean_ARE = np.mean(error_q)
median_ATE = np.median(error_t)
median_ARE = np.median(error_q)
mean_loc = np.mean(correct_loc_results)
mean_ori = np.mean(correct_ori_results)
log_string('Mean Cost Time(s): %f' % mean_time)
log_string('Mean Position Error(m): %f' % mean_ATE)
log_string('Mean Orientation Error(degrees): %f' % mean_ARE)
log_string('Median Position Error(m): %f' % median_ATE)
log_string('Median Orientation Error(degrees): %f' % median_ARE)
log_string('Mean Loc Acc: %f' % mean_loc)
log_string('Mean Ori Acc: %f' % mean_ori)
val_writer.add_scalar('MeanTime', mean_time, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanATE', mean_ATE, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanARE', mean_ARE, TOTAL_ITERATIONS)
val_writer.add_scalar('MedianATE', median_ATE, TOTAL_ITERATIONS)
val_writer.add_scalar('MedianARE', median_ARE, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanLoc', mean_loc, TOTAL_ITERATIONS)
val_writer.add_scalar('MeanOri', mean_ori, TOTAL_ITERATIONS)
# trajectory
fig = plt.figure()
real_pose = pred_translation - pose_m
gt_pose = gt_translation - pose_m
plt.scatter(gt_pose[:, 1], gt_pose[:, 0], s=3, c='black')
plt.scatter(real_pose[:, 1], real_pose[:, 0], s=3, c='red')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.plot(gt_pose[0, 1], gt_pose[0, 0], 'y*', markersize=10)
image_filename = os.path.join(os.path.expanduser(FLAGS.log_dir), '{:s}.png'.format('trajectory'))
fig.savefig(image_filename, dpi=200, bbox_inches='tight')
# save error and trajectory
error_t_filename = osp.join(FLAGS.log_dir, 'error_t.txt')
error_q_filename = osp.join(FLAGS.log_dir, 'error_q.txt')
pred_t_filename = osp.join(FLAGS.log_dir, 'pred_t.txt')
gt_t_filename = osp.join(FLAGS.log_dir, 'gt_t.txt')
np.savetxt(error_t_filename, error_t, fmt='%8.7f')
np.savetxt(error_q_filename, error_q, fmt='%8.7f')
np.savetxt(pred_t_filename, real_pose, fmt='%8.7f')
np.savetxt(gt_t_filename, gt_pose, fmt='%8.7f')
def run_model(model, PC, validate=False):
if not validate:
model.train()
return model(PC)
else:
with torch.no_grad():
model.eval()
return model(PC)
if __name__ == "__main__":
train()