Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - chore: remove unnecessary @[eqns] attributes #11460

Closed
wants to merge 12 commits into from
2 changes: 1 addition & 1 deletion Mathlib/Analysis/SpecialFunctions/Gaussian.lean
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,7 @@ theorem integrableOn_rpow_mul_exp_neg_mul_rpow {p s b : ℝ} (hs : -1 < s) (hp :
rpow_neg_one, mul_inv_cancel_left₀]
all_goals linarith [mem_Ioi.mp hx]
refine Integrable.const_mul ?_ _
rw [← integrableOn_def]
rw [← IntegrableOn]
exact integrableOn_rpow_mul_exp_neg_rpow hs hp

theorem integrableOn_rpow_mul_exp_neg_mul_sq {b : ℝ} (hb : 0 < b) {s : ℝ} (hs : -1 < s) :
Expand Down
4 changes: 1 addition & 3 deletions Mathlib/Computability/TMToPartrec.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1240,8 +1240,7 @@ def K'.elim (a b c d : List Γ') : K' → List Γ'
| K'.stack => d
#align turing.partrec_to_TM2.K'.elim Turing.PartrecToTM2.K'.elim

/- Porting note: The equation lemma of `elim` simplifies to `match` structures. To prevent this,
we replace equation lemmas of `elim`. -/
-- The equation lemma of `elim` simplifies to `match` structures.

theorem K'.elim_main (a b c d) : K'.elim a b c d K'.main = a := rfl

Expand All @@ -1251,7 +1250,6 @@ theorem K'.elim_aux (a b c d) : K'.elim a b c d K'.aux = c := rfl

theorem K'.elim_stack (a b c d) : K'.elim a b c d K'.stack = d := rfl

attribute [eqns K'.elim_main K'.elim_rev K'.elim_aux K'.elim_stack] K'.elim
attribute [simp] K'.elim

@[simp]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/MeasureTheory/Decomposition/RadonNikodym.lean
Original file line number Diff line number Diff line change
Expand Up @@ -409,7 +409,7 @@ theorem withDensityᵥ_rnDeriv_eq (s : SignedMeasure α) (μ : Measure α) [Sigm
rw [absolutelyContinuous_ennreal_iff, (_ : μ.toENNRealVectorMeasure.ennrealToMeasure = μ),
totalVariation_absolutelyContinuous_iff] at h
· ext1 i hi
rw [withDensityᵥ_apply (integrable_rnDeriv _ _) hi, rnDeriv, integral_sub,
rw [withDensityᵥ_apply (integrable_rnDeriv _ _) hi, rnDeriv_def, integral_sub,
set_integral_toReal_rnDeriv h.1 i, set_integral_toReal_rnDeriv h.2 i]
· conv_rhs => rw [← s.toSignedMeasure_toJordanDecomposition]
erw [VectorMeasure.sub_apply]
Expand Down
9 changes: 3 additions & 6 deletions Mathlib/MeasureTheory/Decomposition/SignedLebesgue.lean
Original file line number Diff line number Diff line change
Expand Up @@ -178,20 +178,17 @@ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x =>
(s.toJordanDecomposition.negPart.rnDeriv μ x).toReal
#align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv

-- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`.

-- The generated equation theorem is the form of `rnDeriv s μ x = ...`.
theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x =>
(s.toJordanDecomposition.posPart.rnDeriv μ x).toReal -
(s.toJordanDecomposition.negPart.rnDeriv μ x).toReal :=
rfl

attribute [eqns rnDeriv_def] rnDeriv

variable {s t : SignedMeasure α}

@[measurability]
theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by
rw [rnDeriv]
rw [rnDeriv_def]
measurability
#align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv

Expand All @@ -213,7 +210,7 @@ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ]
s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by
conv_rhs =>
rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure]
rw [singularPart, rnDeriv,
rw [singularPart, rnDeriv_def,
withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _)
(integrable_toReal_of_lintegral_ne_top _ _),
withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg,
Expand Down
8 changes: 0 additions & 8 deletions Mathlib/MeasureTheory/Function/L1Space.lean
Original file line number Diff line number Diff line change
Expand Up @@ -110,8 +110,6 @@ theorem hasFiniteIntegral_def {_ : MeasurableSpace α} (f : α → β) (μ : Mea
HasFiniteIntegral f μ ↔ ((∫⁻ a, ‖f a‖₊ ∂μ) < ∞) :=
Iff.rfl

attribute [eqns hasFiniteIntegral_def] HasFiniteIntegral

theorem hasFiniteIntegral_iff_norm (f : α → β) :
HasFiniteIntegral f μ ↔ (∫⁻ a, ENNReal.ofReal ‖f a‖ ∂μ) < ∞ := by
simp only [HasFiniteIntegral, ofReal_norm_eq_coe_nnnorm]
Expand Down Expand Up @@ -440,12 +438,6 @@ def Integrable {α} {_ : MeasurableSpace α} (f : α → β) (μ : Measure α :=
AEStronglyMeasurable f μ ∧ HasFiniteIntegral f μ
#align measure_theory.integrable MeasureTheory.Integrable

theorem integrable_def {α} {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) :
Integrable f μ ↔ (AEStronglyMeasurable f μ ∧ HasFiniteIntegral f μ) :=
Iff.rfl

attribute [eqns integrable_def] Integrable

theorem memℒp_one_iff_integrable {f : α → β} : Memℒp f 1 μ ↔ Integrable f μ := by
simp_rw [Integrable, HasFiniteIntegral, Memℒp, snorm_one_eq_lintegral_nnnorm]
#align measure_theory.mem_ℒp_one_iff_integrable MeasureTheory.memℒp_one_iff_integrable
Expand Down
7 changes: 0 additions & 7 deletions Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -109,13 +109,6 @@ def Memℒp {α} {_ : MeasurableSpace α} (f : α → E) (p : ℝ≥0∞)
AEStronglyMeasurable f μ ∧ snorm f p μ < ∞
#align measure_theory.mem_ℒp MeasureTheory.Memℒp

-- Porting note (#11215): TODO Delete this when leanprover/lean4#2243 is fixed.
theorem memℒp_def {α} {_ : MeasurableSpace α} (f : α → E) (p : ℝ≥0∞) (μ : Measure α) :
Memℒp f p μ ↔ (AEStronglyMeasurable f μ ∧ snorm f p μ < ∞) :=
Iff.rfl

attribute [eqns memℒp_def] Memℒp

theorem Memℒp.aestronglyMeasurable {f : α → E} {p : ℝ≥0∞} (h : Memℒp f p μ) :
AEStronglyMeasurable f μ :=
h.1
Expand Down
7 changes: 0 additions & 7 deletions Mathlib/MeasureTheory/Integral/IntegrableOn.lean
Original file line number Diff line number Diff line change
Expand Up @@ -91,13 +91,6 @@ def IntegrableOn (f : α → E) (s : Set α) (μ : Measure α := by volume_tac)
Integrable f (μ.restrict s)
#align measure_theory.integrable_on MeasureTheory.IntegrableOn

-- Porting note (#11215): TODO Delete this when leanprover/lean4#2243 is fixed.
theorem integrableOn_def (f : α → E) (s : Set α) (μ : Measure α) :
IntegrableOn f s μ ↔ Integrable f (μ.restrict s) :=
Iff.rfl

attribute [eqns integrableOn_def] IntegrableOn

theorem IntegrableOn.integrable (h : IntegrableOn f s μ) : Integrable f (μ.restrict s) :=
h
#align measure_theory.integrable_on.integrable MeasureTheory.IntegrableOn.integrable
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/NumberTheory/LSeries/AbstractFuncEq.lean
Original file line number Diff line number Diff line change
Expand Up @@ -360,10 +360,10 @@ lemma f_modif_aux2 {s : ℂ} (hs : P.k < re s) :
- P.ε • (∫ (x : ℝ) in Ioc 0 1, (x : ℂ) ^ (s - P.k - 1)) • P.g₀ := by
rw [integral_sub, integral_smul, integral_smul_const, integral_smul_const]
· apply Integrable.smul_const
rw [← integrableOn_def, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
rw [← IntegrableOn, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
exact intervalIntegral.intervalIntegrable_cpow' h_re1
· refine (Integrable.smul_const ?_ _).smul _
rw [← integrableOn_def, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
rw [← IntegrableOn, ← intervalIntegrable_iff_integrableOn_Ioc_of_le zero_le_one]
exact intervalIntegral.intervalIntegrable_cpow' h_re2
_ = _ := by simp_rw [← intervalIntegral.integral_of_le zero_le_one,
integral_cpow (Or.inl h_re1), integral_cpow (Or.inl h_re2), ofReal_zero, ofReal_one,
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Probability/Distributions/Exponential.lean
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ lemma lintegral_exponentialPDF_eq_antiDeriv {r : ℝ} (hr : 0 < r) (x : ℝ) :
· simp only [neg_mul, one_mul]
exact fun _ _ ↦ HasDerivAt.hasDerivWithinAt hasDerivAt_neg_exp_mul_exp
· apply Integrable.aestronglyMeasurable (Integrable.const_mul _ _)
rw [← integrableOn_def, integrableOn_Icc_iff_integrableOn_Ioc]
rw [← IntegrableOn, integrableOn_Icc_iff_integrableOn_Ioc]
exact exp_neg_integrableOn_Ioc hr
· refine ne_of_lt (IntegrableOn.set_lintegral_lt_top ?_)
rw [integrableOn_Icc_iff_integrableOn_Ioc]
Expand Down
Loading