Package for analyzing MS with Python
It can provide the following functionalities now:
- mzXMLParser for fast and efficient mzXML parse
- FPIC method for extracting PICs from raw LC-MS dataset effectively and quickly
In future, more file formats will be supported and more methods will be implemented into PyMass package, so researchers can create complex analysis workflows for LC-MS datasets in Python with ease.
-
Hardware
- Modern CPUs with Advanced Vector Extensions 2(AVX2) instructions
-
Windows:
-
Linux:
- Ubuntu 16.04
- GCC
- Python
- CMake
- SWIG
- Download pymass
- Unzip it into pymass directory
- Windows:
-
Open "VS2015 x64 Native Tools Command Prompt"
-
Run following commands in the prompt
cd pymass mkdir build cd build cmake .. -G "NMake Makefiles" -DCMAKE_BUILD_TYPE=Release nmake nmake install
-
- Linux:
- PyMass can be built and run smoothly in Ubuntu Linux 16.04. We provide a bash script to download thirdparty libraries, apply the patches, build pymass automatically
wget https://github.com/zmzhang/pymass/raw/master/build.sh chmod +x build.sh ./build.sh
- PyMass can be built and run smoothly in Ubuntu Linux 16.04. We provide a bash script to download thirdparty libraries, apply the patches, build pymass automatically
-
Go to pymass/python directory
-
Download MM14 dataset from this url and unzip it
-
Run following Python code fragment to parse mzXML file and extract PICs from it
from _pymass import mzXMLParser, FPICs import sys mzfile="MM14_20um.mzxml" mzfile=mzfile.encode(sys.getfilesystemencoding()) parser=mzXMLParser() lcms = parser.parseFile(mzfile) pics = FPICs(lcms, 300.0, 100.0, 0.5)
For any questions, please contact: