Skip to content

zhouyiks/MMVMEvalKit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs

Teaser

We build the evaluation tool MMVMEvalKit based on VLMEvalKit.

Before running evaluation:

  1. Clone down our MMVMEvalKit.
  2. Download the match_bench.zip and mllm_match_eval_full.tsv from here and put them under the MMVMEvalKit folder and match_bench.zip
  3. Evironment requirements follow that of VLMEvalKit
  4. Note: Your OpenAI API Key should be setted in the .env file:
# OpenAI API
OPENAI_API_KEY=
OPENAI_API_BASE=

To evaluate the existing MLLMs on MMVM benchmark, e.g. InternVL2-2B, run

python run.py --data MMatch --model InternVL2-2B --verbose

To evaluate CoLVA-InternVL2-4B on MMVM benchmark, download the pretrained weights from here and run

python run.py --data MMatch --model colva_internvl2_4b --verbose

To evaluate CoLVA-Qwen2VL-2B on MMVM benchmark, download the pretrained weights from here and run

python run.py --data MMatch --model colva_qwen2vl_2b --verbose

To evaluate CoLVA-Qwen2VL-7B on MMVM benchmark, download the pretrained weights from here and run

python run.py --data MMatch --model colva_qwen2vl_7b --verbose

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published