Skip to content

[ICLR 2025πŸŽ‰] Official implementation for paper "ET-SEED: Efficient Trajectory-Level SE(3) Equivariant Diffusion Policy".

License

Notifications You must be signed in to change notification settings

yuechen0614/ET-SEED

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

ET-SEED: Efficient Trajectory-Level SE(3) Equivariant Diffusion Policy

[Project page] | [Paper] | [Video]

Chenrui Tie*1,2, Yue Chen*1, Ruihai Wu*1, Boxuan Dong1, Zeyi Li1, Chongkai Gao2, Hao Dong1

1 Peking University, 2 National University of Singapore

International Conference on Learning Representations (ICLR) 2025

drawing

This repository includes:

  • Implementation of the ET-SEED method that takes point clouds as input.
  • A set of manipulation environments: Open Bottle Cap, Open Door, Rotate Triangle and Calligraphy. (Garment Manipulation Environment can be found in GarmentLab)
  • Data generation, training, and evaluation scripts that accompany the above algorithms and environments.

πŸ› Try it out!

πŸ› οΈ Installation

To reproduce our simulation results, install our conda environment on a Linux machine with Nvidia GPU.

  1. Install Isaac Gym Download the Isaac Gym Preview release from the website, then follow the installation instructions in the documentation.

  2. Clone this repo

    git clone https://github.com/Cold114514/ET-SEED.git
    
  3. Install environment: Use Mambaforge (strongly recommended):

    mamba env create -f conda_environment.yaml
    conda activate equi
    

    or use Anaconda (not recommended):

    conda env create -f conda_environment.yaml
    conda activate equi
    

🦾 Equivariance Check

Run the following command to check equivariance:

python test_equiv.py

πŸ“š Demonstration Generation

The following code generates demonstrations for simulated environments, you can change [toy_env.py] with other environments files and Replace [task_name], [num_traj] and [output_file] with your choices.

python etseed/env/toy_env.py --num_traj=50 --output_file=rotate_triangle.npy --task_name=rotate_triangle

Tips: if you want to change the setting of the simulation environment, you can refer to the [config/README.md] file.

πŸš€ Training and Evaluation

The following code runs training for our method.

Fill the dataset path with the data_out_dir argument in the previous section.

python train.py

Evaluate the model:

python test.py

πŸ™ Acknowledgement

πŸ“ Citation and Reference

If you find this paper useful, please consider staring 🌟 this repo and citing πŸ“‘ our paper:

@inproceedings{tie2025etseed,
    title={{ET}-{SEED}: {EFFICIENT} {TRAJECTORY}-{LEVEL} {SE}(3) {EQUIVARIANT} {DIFFUSION} {POLICY}},
    author={Chenrui Tie and Yue Chen and Ruihai Wu and Boxuan Dong and Zeyi Li and Chongkai Gao and Hao Dong},
    booktitle={The Thirteenth International Conference on Learning Representations},
    year={2025},
    url={https://openreview.net/forum?id=OheAR2xrtb}
}

About

[ICLR 2025πŸŽ‰] Official implementation for paper "ET-SEED: Efficient Trajectory-Level SE(3) Equivariant Diffusion Policy".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published