This repository is for work submitted in Spring 2019 for the Machine Learning (7641) class offered by GATech via Udacity.
This project was built with Python 3.7.0
.
The environment may be installed as such:
virtualenv .venv --python ~/local/path/to/3.7.0/bin/python
echo 'export PYTHONPATH="../:."' >> ./.venv/bin/activate
source ./.venv/bin/activate
python -m pip install --requirement requirements.txt
If running on a Mac, also run:
sed -i -e 's/: macosx/: TkAgg/g' ./.venv/lib/python3.7/site-packages/matplotlib/mpl-data/matplotlibrc
All pip prerequisites are listed in requirements.txt. They may be installed with pip using:
pip install -r requirements.txt
The environment may be activated with:
source ./.venv/bin/activate
It may be deactivated with: deactivate
├── algorithms
│ ├── genetic_algorithm.py
│ ├── mimic.py
│ ├── random_hill_climb.py
│ └── simulated_annealing.py
├── data
│ └── contraceptive.csv
├── neural_networks
│ ├── bar_chart.py
│ ├── neural_networks.py
│ └── nn_compare.py
├── plots
│ ├── complex_time
│ ├── fit_iter
│ │ └── *.png
│ ├── fit_time
│ │ └── *.png
│ └── neural_network
│ └── *.png
├── puzzles
│ ├── bar_chart.py
│ ├── k_coloring.py
│ ├── knapsack.py
│ ├── plotter.py
│ ├── puzzle_solver.py
│ ├── run_all.py
│ └── travelling_salesman.py
└── requirements.txt
Run run_all.py
to run all the puzzle experiments.
Run neural_networks.py
to run all neural network optimization experiments.
Run bar_chart.py
to visualize.
All generated visualizations are saved under the plots
directory.
A survey project exploring a number of randomized optimization algorithms on the contraceptives datasets.
- Yaniv Talmor