Skip to content

ynvtlmr/7641.A2

Repository files navigation

OMSCS 7641 - Machine Learning

This repository is for work submitted in Spring 2019 for the Machine Learning (7641) class offered by GATech via Udacity.

Getting Started

This project was built with Python 3.7.0. The environment may be installed as such:

virtualenv .venv --python ~/local/path/to/3.7.0/bin/python
echo  'export PYTHONPATH="../:."' >> ./.venv/bin/activate
source ./.venv/bin/activate
python -m pip install --requirement requirements.txt

If running on a Mac, also run:

sed -i -e 's/: macosx/: TkAgg/g' ./.venv/lib/python3.7/site-packages/matplotlib/mpl-data/matplotlibrc

Prerequisites

All pip prerequisites are listed in requirements.txt. They may be installed with pip using:

pip install -r requirements.txt

Environment

The environment may be activated with:

source ./.venv/bin/activate

It may be deactivated with: deactivate

Abridged directory structure

├── algorithms
│   ├── genetic_algorithm.py
│   ├── mimic.py
│   ├── random_hill_climb.py
│   └── simulated_annealing.py
├── data
│   └── contraceptive.csv
├── neural_networks
│   ├── bar_chart.py
│   ├── neural_networks.py
│   └── nn_compare.py
├── plots
│   ├── complex_time
│   ├── fit_iter
│   │   └── *.png
│   ├── fit_time
│   │   └── *.png
│   └── neural_network
│       └── *.png
├── puzzles
│   ├── bar_chart.py
│   ├── k_coloring.py
│   ├── knapsack.py
│   ├── plotter.py
│   ├── puzzle_solver.py
│   ├── run_all.py
│   └── travelling_salesman.py
└── requirements.txt

Instructions

Run run_all.py to run all the puzzle experiments. Run neural_networks.py to run all neural network optimization experiments. Run bar_chart.py to visualize. All generated visualizations are saved under the plots directory.

Project 1

A survey project exploring a number of randomized optimization algorithms on the contraceptives datasets.

Authors

  • Yaniv Talmor

About

7641.A2

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages