forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Kernel]
compressed-tensors
marlin 24 support (vllm-project#5435)
- Loading branch information
Showing
5 changed files
with
196 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
134 changes: 134 additions & 0 deletions
134
...el_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
from typing import Callable, List, Optional | ||
|
||
import torch | ||
from torch.nn import Parameter | ||
|
||
from vllm import _custom_ops as ops | ||
from vllm.model_executor.layers.quantization.compressed_tensors.schemes import ( | ||
CompressedTensorsScheme) | ||
from vllm.model_executor.layers.quantization.gptq_marlin_24 import ( | ||
GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N) | ||
from vllm.model_executor.utils import set_weight_attrs | ||
|
||
__all__ = ["CompressedTensorsW4A16Sparse24"] | ||
|
||
|
||
class CompressedTensorsW4A16Sparse24(CompressedTensorsScheme): | ||
|
||
def __init__(self, | ||
strategy: str, | ||
num_bits: int, | ||
group_size: Optional[int] = None): | ||
self.strategy = strategy | ||
self.group_size = group_size | ||
self.num_bits = num_bits | ||
self.tile_size = 16 | ||
|
||
if self.strategy == "group" and self.group_size is None: | ||
raise ValueError( | ||
"group_size must be given when using strategy group") | ||
|
||
def create_weights(self, layer: torch.nn.Module, input_size: int, | ||
output_partition_sizes: List[int], | ||
input_size_per_partition: int, | ||
params_dtype: torch.dtype, weight_loader: Callable, | ||
**kwargs): | ||
|
||
pack_factor = 32 // self.num_bits | ||
output_size_per_partition = sum(output_partition_sizes) | ||
|
||
qweight = Parameter( | ||
torch.empty( | ||
input_size_per_partition // self.tile_size // 2, | ||
output_size_per_partition * self.tile_size // pack_factor, | ||
dtype=torch.int32, | ||
), | ||
requires_grad=False, | ||
) | ||
set_weight_attrs( | ||
qweight, | ||
{ | ||
"input_dim": 0, | ||
"output_dim": 1, | ||
"packed_dim": 1, | ||
"pack_factor": pack_factor, | ||
"marlin_tile_size": self.tile_size, | ||
"weight_loader": weight_loader | ||
}, | ||
) | ||
|
||
layer.register_parameter("weight_packed", qweight) | ||
|
||
input_groups = (1 if self.group_size is None else | ||
input_size_per_partition // self.group_size) | ||
|
||
scales = Parameter( | ||
torch.empty( | ||
input_groups, | ||
output_size_per_partition, | ||
dtype=params_dtype, | ||
), | ||
requires_grad=False, | ||
) | ||
set_weight_attrs( | ||
scales, | ||
{ | ||
"output_dim": 1, | ||
"input_dim": None if input_groups == 1 else 0, | ||
"weight_loader": weight_loader | ||
}, | ||
) | ||
layer.register_parameter("scale_packed", scales) | ||
|
||
weight_shape = Parameter(torch.empty(2, dtype=torch.int64), | ||
requires_grad=False) | ||
|
||
layer.register_parameter("weight_shape", weight_shape) | ||
set_weight_attrs(weight_shape, {"weight_loader": weight_loader}) | ||
|
||
meta = Parameter( | ||
torch.empty( | ||
input_size_per_partition // 8 // 2 // 2, | ||
output_size_per_partition * 2, | ||
dtype=torch.int16, | ||
), | ||
requires_grad=False, | ||
) | ||
set_weight_attrs( | ||
meta, | ||
{ | ||
"input_dim": 0, | ||
"packed_dim": 1, | ||
"pack_factor": 1, | ||
"output_dim": 1, | ||
"marlin_tile_size": 2, | ||
"weight_loader": weight_loader | ||
}, | ||
) | ||
layer.register_parameter("meta", meta) | ||
|
||
max_workspace_size = ( | ||
output_size_per_partition // | ||
GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL | ||
workspace = Parameter(torch.zeros(max_workspace_size, dtype=torch.int), | ||
requires_grad=False) | ||
layer.workspace = workspace | ||
|
||
def apply_weights(self, layer: torch.nn.Module, x: torch.Tensor): | ||
qweight = layer.weight_packed | ||
meta = layer.meta | ||
scales = layer.scale_packed | ||
workspace = layer.workspace | ||
|
||
x_2d = x.view(-1, x.shape[-1]) | ||
|
||
size_m = x_2d.shape[0] | ||
size_k = x_2d.shape[1] | ||
size_n = scales.shape[1] | ||
|
||
output_2d = ops.gptq_marlin_24_gemm(x_2d, qweight, meta, scales, | ||
workspace, self.num_bits, size_m, | ||
size_n, size_k) | ||
|
||
output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], )) | ||
return output |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters