Xiaoyan LU and Qihao WENG
[Paper
]
- DeepGlobe Road Training Dataset : 4696 samples
- SpaceNet Building AOI2 and AOI4 Dataset : 8429 samples
- DeepGlobe Road Test Dataset : 1530 samples
- SpaceNet Building AOI3 and AOI5 Dataset : 1148 (Paris) and 1101 (Khartoum) samples
- The WHU building (Christchurch) dataset: 2416 samples
- The trained weights of SAM_Adapter, SAM_LoRA (r=96), and SAM_MLoRA (r=32,n=3) are released at Baidu Drive, Code: MODE
SAM_Adapter
python train_sam_adapter.py --name='b_adapter_sam'
SAM_LoRA (r=96)
python train_sam_adapter.py --name='b_adapter_sam_lora96_96'
SAM_MLoRA (r=32,n=3)
python train_sam_adapter.py --name='b_adapter_sam_multi_lora'
SAM_Adapter
python train_sam_adapter_build.py --name='b_adapter_sam_sp24'
SAM_LoRA (r=96)
python train_sam_adapter_build.py --name='b_adapter_sam_lora96_96_sp24'
SAM_MLoRA (r=32,n=3)
python train_sam_adapter_build.py --name='b_adapter_sam_multi_lora32_sp24'
If this code or dataset contributes to your research, please kindly consider citing our paper :)
@article{Lu2024MLoRA,
title = {Multi-LoRA Fine-Tuned Segment Anything Model for Urban Man-Made Object Extraction},
author = {Xiaoyan LU and Qihao Weng},
journal = {IEEE Transactions on Geoscience and Remote Sensing},
volume = {62},
pages = {1-19},
year = {2024},
doi = {https://doi.org/10.1109/TGRS.2024.3435745}
}