-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
refactor(whitener): add Whitener to whiten a 2D matrix (#185)
- Loading branch information
Showing
3 changed files
with
302 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
import math | ||
|
||
import pytest | ||
import xarray as xr | ||
|
||
from xeofs.preprocessing import Whitener | ||
|
||
from ..conftest import generate_synthetic_dataarray | ||
from ..utilities import ( | ||
assert_expected_coords, | ||
assert_expected_dims, | ||
data_is_dask, | ||
) | ||
|
||
# ============================================================================= | ||
# GENERALLY VALID TEST CASES | ||
# ============================================================================= | ||
N_SAMPLE_DIMS = [1] | ||
N_FEATURE_DIMS = [1] | ||
INDEX_POLICY = ["index"] | ||
NAN_POLICY = ["no_nan"] | ||
DASK_POLICY = ["no_dask", "dask"] | ||
SEED = [0] | ||
|
||
VALID_TEST_DATA = [ | ||
(ns, nf, index, nan, dask) | ||
for ns in N_SAMPLE_DIMS | ||
for nf in N_FEATURE_DIMS | ||
for index in INDEX_POLICY | ||
for nan in NAN_POLICY | ||
for dask in DASK_POLICY | ||
] | ||
|
||
|
||
# TESTS | ||
# ============================================================================= | ||
@pytest.mark.parametrize( | ||
"synthetic_dataarray", | ||
VALID_TEST_DATA, | ||
indirect=["synthetic_dataarray"], | ||
) | ||
def test_fit(synthetic_dataarray): | ||
data = synthetic_dataarray.rename({"sample0": "sample", "feature0": "feature"}) | ||
|
||
whitener = Whitener(n_modes=2) | ||
whitener.fit(data) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"synthetic_dataarray", | ||
VALID_TEST_DATA, | ||
indirect=["synthetic_dataarray"], | ||
) | ||
def test_transform(synthetic_dataarray): | ||
data = synthetic_dataarray.rename({"sample0": "sample", "feature0": "feature"}) | ||
|
||
whitener = Whitener(n_modes=2) | ||
whitener.fit(data) | ||
|
||
# Transform data | ||
transformed_data = whitener.transform(data) | ||
transformed_data2 = whitener.transform(data) | ||
assert transformed_data.identical(transformed_data2) | ||
|
||
assert isinstance(transformed_data, xr.DataArray) | ||
assert transformed_data.ndim == 2 | ||
assert transformed_data.dims == ("sample", "feature") | ||
|
||
# Consistent dask behaviour | ||
is_dask_before = data_is_dask(data) | ||
is_dask_after = data_is_dask(transformed_data) | ||
assert is_dask_before == is_dask_after | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"synthetic_dataarray", | ||
VALID_TEST_DATA, | ||
indirect=["synthetic_dataarray"], | ||
) | ||
def test_fit_transform(synthetic_dataarray): | ||
data = synthetic_dataarray.rename({"sample0": "sample", "feature0": "feature"}) | ||
|
||
whitener = Whitener(n_modes=2) | ||
|
||
# Transform data | ||
transformed_data = whitener.fit_transform(data) | ||
transformed_data2 = whitener.transform(data) | ||
assert transformed_data.identical(transformed_data2) | ||
|
||
assert isinstance(transformed_data, xr.DataArray) | ||
assert transformed_data.ndim == 2 | ||
assert transformed_data.dims == ("sample", "feature") | ||
|
||
# Consistent dask behaviour | ||
is_dask_before = data_is_dask(data) | ||
is_dask_after = data_is_dask(transformed_data) | ||
assert is_dask_before == is_dask_after | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"synthetic_dataarray", | ||
VALID_TEST_DATA, | ||
indirect=["synthetic_dataarray"], | ||
) | ||
def test_invserse_transform_data(synthetic_dataarray): | ||
data = synthetic_dataarray.rename({"sample0": "sample", "feature0": "feature"}) | ||
|
||
whitener = Whitener(n_modes=2) | ||
whitener.fit(data) | ||
|
||
whitened_data = whitener.transform(data) | ||
unwhitened_data = whitener.inverse_transform_data(whitened_data) | ||
|
||
is_dask_before = data_is_dask(data) | ||
is_dask_after = data_is_dask(unwhitened_data) | ||
|
||
# Unstacked data has dimensions of original data | ||
assert_expected_dims(data, unwhitened_data, policy="all") | ||
# Unstacked data has coordinates of original data | ||
assert_expected_coords(data, unwhitened_data, policy="all") | ||
# inverse transform should not change dask-ness | ||
assert is_dask_before == is_dask_after | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"alpha", | ||
[0.0, 0.5, 1.0, 1.5], | ||
) | ||
def test_transform_alpha(alpha): | ||
data = generate_synthetic_dataarray(1, 1, "index", "no_nan", "no_dask") | ||
data = data.rename({"sample0": "sample", "feature0": "feature"}) | ||
|
||
whitener = Whitener(n_modes=2, alpha=alpha) | ||
data_whitened = whitener.fit_transform(data) | ||
|
||
norm = (data_whitened**2).sum("sample") | ||
ones = norm / norm | ||
# Check that for alpha=0 full whitening is performed | ||
if math.isclose(alpha, 0.0, abs_tol=1e-6): | ||
xr.testing.assert_allclose(norm, ones, atol=1e-6) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"alpha", | ||
[0.0, 0.5, 1.0, 1.5], | ||
) | ||
def test_invserse_transform_alpha(alpha): | ||
data = generate_synthetic_dataarray(1, 1, "index", "no_nan", "no_dask") | ||
data = data.rename({"sample0": "sample", "feature0": "feature"}) | ||
|
||
whitener = Whitener(n_modes=6, alpha=alpha) | ||
data_whitened = whitener.fit_transform(data) | ||
data_unwhitened = whitener.inverse_transform_data(data_whitened) | ||
|
||
xr.testing.assert_allclose(data, data_unwhitened, atol=1e-6) | ||
|
||
|
||
def test_invalid_alpha(): | ||
data = generate_synthetic_dataarray(1, 1, "index", "no_nan", "no_dask") | ||
data = data.rename({"sample0": "sample", "feature0": "feature"}) | ||
|
||
err_msg = "`alpha` must be greater than or equal to 0" | ||
with pytest.raises(ValueError, match=err_msg): | ||
Whitener(n_modes=2, alpha=-1.0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
from typing import Dict, Optional | ||
|
||
import xarray as xr | ||
from typing_extensions import Self | ||
|
||
from ..models.decomposer import Decomposer | ||
from ..utils.data_types import ( | ||
DataArray, | ||
Dims, | ||
DimsList, | ||
) | ||
from ..utils.sanity_checks import assert_single_dataarray | ||
from .transformer import Transformer | ||
|
||
|
||
class Whitener(Transformer): | ||
"""Whiten a 2D DataArray matrix using PCA. | ||
Parameters | ||
---------- | ||
n_modes: int | float | ||
If int, number of components to keep. If float, fraction of variance to keep. | ||
init_rank_reduction: float, default=0.3 | ||
Used only when `n_modes` is given as a float. Specifiy the initial PCA rank reduction before truncating the solution to the desired fraction of explained variance. Must be in the half open interval ]0, 1]. Lower values will speed up the computation. | ||
alpha: float, default=0.0 | ||
Power parameter to perform fractional whitening, where 0 corresponds to full PCA whitening and 1 to PCA without whitening. | ||
sample_name: str, default="sample" | ||
Name of the sample dimension. | ||
feature_name: str, default="feature" | ||
Name of the feature dimension. | ||
solver_kwargs: Dict | ||
Additional keyword arguments for the SVD solver. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
n_modes: int | float, | ||
init_rank_reduction: float = 0.3, | ||
alpha: float = 0.0, | ||
sample_name: str = "sample", | ||
feature_name: str = "feature", | ||
solver_kwargs: Dict = {}, | ||
): | ||
super().__init__(sample_name, feature_name) | ||
|
||
# Verify that alpha has a lower bound of 0 | ||
if alpha < 0: | ||
raise ValueError("`alpha` must be greater than or equal to 0") | ||
|
||
self.n_modes = n_modes | ||
self.init_rank_reduction = init_rank_reduction | ||
self.alpha = alpha | ||
self.solver_kwargs = solver_kwargs | ||
|
||
def _sanity_check_input(self, X) -> None: | ||
assert_single_dataarray(X) | ||
|
||
if len(X.dims) != 2: | ||
raise ValueError("Input DataArray must have shape 2") | ||
|
||
if X.dims != (self.sample_name, self.feature_name): | ||
raise ValueError( | ||
"Input DataArray must have dimensions ({:}, {:})".format( | ||
self.sample_name, self.feature_name | ||
) | ||
) | ||
|
||
def get_serialization_attrs(self) -> Dict: | ||
return dict(n_modes=self.n_modes, alpha=self.alpha) | ||
|
||
def fit( | ||
self, | ||
X: xr.DataArray, | ||
sample_dims: Optional[Dims] = None, | ||
feature_dims: Optional[DimsList] = None, | ||
) -> Self: | ||
self._sanity_check_input(X) | ||
|
||
decomposer = Decomposer( | ||
n_modes=self.n_modes, | ||
init_rank_reduction=self.init_rank_reduction, | ||
**self.solver_kwargs, | ||
) | ||
decomposer.fit(X, dims=(self.sample_name, self.feature_name)) | ||
|
||
self.U = decomposer.U_ | ||
self.s = decomposer.s_ | ||
self.V = decomposer.V_ | ||
|
||
return self | ||
|
||
def transform(self, X: xr.DataArray) -> DataArray: | ||
"""Transform new data into the fractional whitened PC space.""" | ||
|
||
self._sanity_check_input(X) | ||
|
||
scores = xr.dot(X, self.V, dims=self.feature_name) * self.s ** (self.alpha - 1) | ||
return scores.rename({"mode": self.feature_name}) | ||
|
||
def fit_transform( | ||
self, | ||
X: xr.DataArray, | ||
sample_dims: Optional[Dims] = None, | ||
feature_dims: Optional[DimsList] = None, | ||
) -> DataArray: | ||
return self.fit(X, sample_dims, feature_dims).transform(X) | ||
|
||
def inverse_transform_data(self, X: DataArray) -> DataArray: | ||
"""Transform 2D data (sample x feature) from whitened PC space back into original space.""" | ||
|
||
X = X.rename({self.feature_name: "mode"}) | ||
X_unwhitened = X * self.s ** (1 - self.alpha) | ||
return xr.dot(X_unwhitened, self.V.conj().T, dims="mode") | ||
|
||
def inverse_transform_components(self, X: DataArray) -> DataArray: | ||
"""Transform 2D components (feature x mode) from whitened PC space back into original space.""" | ||
|
||
dummy_dim = "dummy_dim" | ||
comps_pc_space = X.rename({self.feature_name: dummy_dim}) | ||
V = self.V.rename({"mode": dummy_dim}) | ||
return xr.dot(comps_pc_space, V.conj().T, dims=dummy_dim) | ||
|
||
def inverse_transform_scores(self, X: DataArray) -> DataArray: | ||
"""Transform 2D scores (sample x mode) from whitened PC space back into original space.""" | ||
|
||
return X | ||
|
||
def inverse_transform_scores_unseen(self, X: DataArray) -> DataArray: | ||
"""Transform unseen 2D scores (sample x mode) from whitened PC space back into original space.""" | ||
|
||
return X |