-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
5 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,19 +1,19 @@ | ||
# 计算广告论文、学习资料、业界分享 | ||
动态更新工作中实现或者阅读过的计算广告相关论文、学习资料和业界分享,作为自己工作的总结,也希望能为计算广告相关行业的同学带来便利。 | ||
所有资料均来自于互联网,如有侵权,请联系王喆。同时欢迎对计算广告感兴趣的同学与我讨论相关问题,我的联系方式如下: | ||
所有资料均来自于互联网,如有侵权,请联系_王喆_。同时欢迎对计算广告感兴趣的同学与我讨论相关问题,我的联系方式如下: | ||
* Email: [email protected] | ||
* LinkedIn: [王喆的LinkedIn](https://www.linkedin.com/in/zhe-wang-profile/) | ||
* 知乎私信: [王喆的知乎](https://www.zhihu.com/people/wang-zhe-58) | ||
|
||
**会不断加入一些重要的计算广告相关论文和资料,并去掉一些过时的或者跟计算广告不太相关的论文** | ||
* `New!` [Image Matters- Visually modeling user behaviors using Advanced Model Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Image%20Matters-%20Visually%20modeling%20user%20behaviors%20using%20Advanced%20Model%20Server.pdf) <br /> | ||
阿里提出引入商品图像特征的(Deep Image CTR Model)CTR预估模型,并介绍其分布式机器学习框架 Advanced Model Server (AMS) | ||
阿里提出引入商品图像特征的(Deep Image CTR Model)CTR预估模型,并介绍其分布式机器学习框架AMS | ||
* `New!` [Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br /> | ||
阿里提出的深度兴趣网络(Deep Interest Network)CTR预估模型 | ||
|
||
**其他相关资源** | ||
* [张伟楠的RTB Papers列表](https://github.com/wnzhang/rtb-papers)<br /> | ||
* [基于Spark MLlib的CTR prediction模型(LR, Random forest, GBDT, NN, PNN)](https://github.com/wzhe06/CTRmodel) <br /> | ||
* [基于Spark MLlib的CTR预估模型(LR, FM, RF, GBDT, NN, PNN)](https://github.com/wzhe06/CTRmodel) <br /> | ||
* [推荐系统相关论文和资源列表](https://github.com/wzhe06/Reco-papers) <br /> | ||
* [Honglei Zhang的推荐系统论文列表](https://github.com/hongleizhang/RSPapers) | ||
|
||
|
@@ -22,6 +22,7 @@ | |
### Optimization Method | ||
Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给出直观解释的文章 | ||
* [Google Vizier A Service for Black-Box Optimization.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Optimization%20Method/Google%20Vizier%20A%20Service%20for%20Black-Box%20Optimization.pdf) <br /> | ||
Google的深度学习自动调参框架Vizier | ||
* [在线最优化求解(Online Optimization)-冯扬.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Optimization%20Method/%E5%9C%A8%E7%BA%BF%E6%9C%80%E4%BC%98%E5%8C%96%E6%B1%82%E8%A7%A3%28Online%20Optimization%29-%E5%86%AF%E6%89%AC.pdf) <br /> | ||
非常推荐冯扬的这个教程,把在线优化问题讲的非常透 | ||
* [Hogwild A Lock-Free Approach to Parallelizing Stochastic Gradient Descent.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Optimization%20Method/Hogwild%20A%20Lock-Free%20Approach%20to%20Parallelizing%20Stochastic%20Gradient%20Descent.pdf) <br /> | ||
|
@@ -34,7 +35,7 @@ Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给 | |
|
||
|
||
### CTR Prediction | ||
CTR预估模型相关问题,作为计算广告的核心,CTR预估永远是研究的热点,下面每一篇都是非常流行的文章,推荐逐一精读 | ||
作为计算广告的核心,CTR预估永远是研究的热点,下面每一篇都是非常流行的文章,推荐逐一精读 | ||
* [Deep Crossing- Web-Scale Modeling without Manually Crafted Combinatorial Features.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Crossing-%20Web-Scale%20Modeling%20without%20Manually%20Crafted%20Combinatorial%20Features.pdf) <br /> | ||
* [Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br /> | ||
阿里提出的Large Scale Piece-wise Linear Model (LS-PLM) CTR预估模型 | ||
|