conda create -p ./venv python=3.6
source activate ./venv
sh ./build.sh && python -m gibson2.utils.assets_utils --download_assets
- Gibson
-
get dataset here
-
copy URL of
gibson_v2_4+.tar.gz
-
run command
python -m gibson2.utils.assets_utils --download_dataset {URL}
- Matterport3D
-
get dataset according to README
-
run command
python2 download_mp.py --task_data igibson -o . `
- move each folder of scenes to
Gibson Dataset path
You can check Gibson Dataset path
by running
python -m gibson2.utils.assets_utils --download_assets
- Train
python main.py --global_lr 5e-4 --exp_name 'AIM_del_mi' --critic_lr_coef 5e-2 --train_global 1 --dump_location train --scenes_file scenes/train.scenes
- Test (Example)
python main.py --exp_name 'eval_coscan_mp3dhq0f' --scenes_file scenes/mp3dhq0-f.scenes --dump_location std --num_episodes 10 --load_global best.global
- Analyze performance
python analyze.py --dir std --dataset gibson -ne 5 --bins 35,70
python analyze.py --dir std --dataset mp3d -ne 5 --bins 100
- Analyze performance
python scripts/easy_analyze.py rl --dataset hq --subset abcdef --dir std
- Specify GPU Index
export CUDA_VISIBLE_DEVICES=0
export GIBSON_DEVICE_ID=0
- Visualization
python main.py --exp_name 'eval_-72' --scenes_file scenes/mp3dhq0-f.scenes --dump_location ./temp --num_episodes 1 --load_global ./model_best.global --vis_type 2
# dump at ./video/
python scripts/map2d.py --exp_name 'eval_new-72' -ne 1 -ns 4