Skip to content

vsislab/AIM-Mapping

Repository files navigation

BUILD

conda create -p ./venv python=3.6
source activate ./venv
sh ./build.sh && python -m gibson2.utils.assets_utils --download_assets

DATASET

  • Gibson
  1. get dataset here

  2. copy URL of gibson_v2_4+.tar.gz

  3. run command

python -m gibson2.utils.assets_utils --download_dataset {URL}
  • Matterport3D
  1. get dataset according to README

  2. run command

python2 download_mp.py --task_data igibson -o . `
  1. move each folder of scenes to Gibson Dataset path

You can check Gibson Dataset path by running

python -m gibson2.utils.assets_utils --download_assets

USAGE

  • Train
python main.py --global_lr 5e-4 --exp_name 'AIM_del_mi' --critic_lr_coef 5e-2 --train_global 1 --dump_location train --scenes_file scenes/train.scenes
  • Test (Example)
python main.py --exp_name 'eval_coscan_mp3dhq0f' --scenes_file scenes/mp3dhq0-f.scenes --dump_location std --num_episodes 10 --load_global best.global
  • Analyze performance
python analyze.py --dir std --dataset gibson -ne 5 --bins 35,70
python analyze.py --dir std --dataset mp3d -ne 5 --bins 100
  • Analyze performance
python scripts/easy_analyze.py rl --dataset hq --subset abcdef --dir std
  • Specify GPU Index
export CUDA_VISIBLE_DEVICES=0
export GIBSON_DEVICE_ID=0
  • Visualization
python main.py --exp_name 'eval_-72' --scenes_file scenes/mp3dhq0-f.scenes --dump_location ./temp --num_episodes 1 --load_global ./model_best.global  --vis_type 2
# dump at ./video/
python scripts/map2d.py  --exp_name 'eval_new-72' -ne 1 -ns 4

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published