Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Core] Use array to speedup padding #6779

Merged
merged 3 commits into from
Jul 26, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion vllm/model_executor/layers/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ def _apply_min_tokens_penalty(
seqs_to_penalize: List[int] = []
for j, seq_id in enumerate(seq_ids):
seq_data = seq_group.seq_data[seq_id]
if len(seq_data.output_token_ids) < min_tokens:
if len(seq_data.output_token_ids_array) < min_tokens:
seqs_to_penalize.append(j)

if seqs_to_penalize:
Expand Down
21 changes: 12 additions & 9 deletions vllm/model_executor/sampling_metadata.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import random
from array import array
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple

Expand Down Expand Up @@ -329,8 +330,8 @@ def from_sampling_metadata(
user-defined seed for each sequence.
extra_entropy: extra entropy to use when generating seeds.
"""
prompt_tokens: List[List[int]] = []
output_tokens: List[List[int]] = []
prompt_tokens: List[array] = []
output_tokens: List[array] = []
top_ks: List[int] = []
temperatures: List[float] = []
top_ps: List[float] = []
Expand Down Expand Up @@ -432,13 +433,15 @@ def from_sampling_metadata(
if (seq_group.is_prompt
and sampling_params.prompt_logprobs is not None):
prefill_len = len(seq_group.prompt_logprob_indices)
prompt_tokens.extend([] for _ in range(prefill_len))
output_tokens.extend([] for _ in range(prefill_len))
prompt_tokens.extend(
array('l') for _ in range(prefill_len))
output_tokens.extend(
array('l') for _ in range(prefill_len))
if seq_group.do_sample:
for seq_id in seq_ids:
seq_data = seq_group.seq_data[seq_id]
prompt_tokens.append(list(seq_data.prompt_token_ids))
output_tokens.append(list(seq_data.output_token_ids))
prompt_tokens.append(seq_data.prompt_token_ids_array)
output_tokens.append(seq_data.output_token_ids_array)

sampling_tensors = SamplingTensors.from_lists(
temperatures, top_ps, top_ks, min_ps, presence_penalties,
Expand All @@ -454,9 +457,9 @@ def from_lists(cls, temperatures: List[float], top_ps: List[float],
frequency_penalties: List[float],
repetition_penalties: List[float],
sampling_seeds: List[int], sample_indices: List[int],
prompt_tokens: List[List[int]],
output_tokens: List[List[int]], vocab_size: int,
extra_seeds_to_generate: int, device: torch.device,
prompt_tokens: List[array], output_tokens: List[array],
vocab_size: int, extra_seeds_to_generate: int,
device: torch.device,
dtype: torch.dtype) -> "SamplingTensors":
# Note that the performance will be very bad without
# pinned memory.
Expand Down
23 changes: 16 additions & 7 deletions vllm/sequence.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import enum
import math
from abc import ABC, abstractmethod
from array import array
from collections import defaultdict
from dataclasses import dataclass, field
from typing import (TYPE_CHECKING, Dict, List, Mapping, Optional, Set, Tuple,
Expand Down Expand Up @@ -119,10 +120,10 @@ def __init__(
prompt_token_ids: List[int],
output_token_ids: Optional[List[int]] = None,
) -> None:
self._prompt_token_ids: List[int] = list(prompt_token_ids)
self._prompt_token_ids = array('l', prompt_token_ids)
self._prompt_token_ids_tuple: Tuple[int, ...] = tuple(prompt_token_ids)
self._output_token_ids: List[int] = (
list(output_token_ids) if output_token_ids is not None else [])
self._output_token_ids = array(
'l', output_token_ids if output_token_ids is not None else [])

self.cumulative_logprob = 0.0
# The number of tokens that are computed (that run against the model).
Expand All @@ -132,28 +133,36 @@ def __init__(
self._update_cached_all_tokens()

def _update_cached_all_tokens(self):
self._cached_all_token_ids: List[int] = (self._prompt_token_ids +
self._output_token_ids)
self._cached_all_token_ids: List[int] = list(self._prompt_token_ids +
self._output_token_ids)

@property
def prompt_token_ids(self) -> Tuple[int, ...]:
return self._prompt_token_ids_tuple

@prompt_token_ids.setter
def prompt_token_ids(self, new_prompt_token_ids) -> None:
self._prompt_token_ids = list(new_prompt_token_ids)
self._prompt_token_ids = array('l', new_prompt_token_ids)
self._prompt_token_ids_tuple = tuple(new_prompt_token_ids)
self._update_cached_all_tokens()

@property
def prompt_token_ids_array(self) -> array:
return self._prompt_token_ids

@property
def output_token_ids(self) -> Tuple[int, ...]:
return tuple(self._output_token_ids)

@output_token_ids.setter
def output_token_ids(self, new_output_token_ids) -> None:
self._output_token_ids = list(new_output_token_ids)
self._output_token_ids = array('l', new_output_token_ids)
self._update_cached_all_tokens()

@property
def output_token_ids_array(self) -> array:
return self._output_token_ids

def append_token_id(self, token_id: int, logprob: float) -> None:
self._output_token_ids.append(token_id)
self._cached_all_token_ids.append(token_id)
Expand Down
Loading