Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend] New allowed_token_ids decoding request parameter #6753

Merged
merged 5 commits into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 75 additions & 0 deletions vllm/entrypoints/openai/logits_processors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
from functools import lru_cache
from typing import Dict, FrozenSet, Iterable, List, Optional, Union

import torch
from transformers import PreTrainedTokenizer

from vllm.sampling_params import LogitsProcessor


class AllowedTokenIdsLogitsProcessor:
"""Logits processor for constraining generatedtokens to a
specific set of token ids."""

def __init__(self, allowed_ids: Iterable[int]):
self.allowed_ids: Optional[List[int]] = list(allowed_ids)
self.mask: Optional[torch.Tensor] = None

def __call__(self, token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
if self.mask is None:
self.mask = torch.full((logits.shape[-1], ),
True,
dtype=torch.bool,
device=logits.device)
self.mask[self.allowed_ids] = False
self.allowed_ids = None
logits.masked_fill_(self.mask, float("-inf"))
return logits


@lru_cache(maxsize=32)
def _get_allowed_token_ids_logits_processor(
allowed_token_ids: FrozenSet[int],
vocab_size: int,
) -> LogitsProcessor:
if not allowed_token_ids:
raise ValueError("Empty allowed_token_ids provided")
if not all(0 <= tid < vocab_size for tid in allowed_token_ids):
raise ValueError("allowed_token_ids contains "
"out-of-vocab token id")
return AllowedTokenIdsLogitsProcessor(allowed_token_ids)


def get_logits_processors(
logit_bias: Optional[Union[Dict[int, float], Dict[str, float]]],
allowed_token_ids: Optional[List[int]],
tokenizer: PreTrainedTokenizer) -> List[LogitsProcessor]:
logits_processors = []
if logit_bias:
try:
# Convert token_id to integer
# Clamp the bias between -100 and 100 per OpenAI API spec
clamped_logit_bias: Dict[int, float] = {
int(token_id): min(100.0, max(-100.0, bias))
for token_id, bias in logit_bias.items()
}
except ValueError as exc:
raise ValueError(
"Found token_id in logit_bias that is not "
"an integer or string representing an integer") from exc

def logit_bias_logits_processor(token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
for token_id, bias in clamped_logit_bias.items():
logits[token_id] += bias
return logits

logits_processors.append(logit_bias_logits_processor)

if allowed_token_ids is not None:
logits_processors.append(
_get_allowed_token_ids_logits_processor(
frozenset(allowed_token_ids), tokenizer.vocab_size))

return logits_processors
61 changes: 17 additions & 44 deletions vllm/entrypoints/openai/protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,12 @@

import torch
from pydantic import BaseModel, ConfigDict, Field, model_validator
from transformers import PreTrainedTokenizer
# pydantic needs the TypedDict from typing_extensions
from typing_extensions import Annotated

from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
from vllm.entrypoints.openai.logits_processors import get_logits_processors
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
from vllm.utils import random_uuid
Expand Down Expand Up @@ -213,30 +216,15 @@ class ChatCompletionRequest(OpenAIBaseModel):

# doc: end-chat-completion-extra-params

def to_sampling_params(self) -> SamplingParams:
def to_sampling_params(self,
tokenizer: PreTrainedTokenizer) -> SamplingParams:
# We now allow logprobs being true without top_logrobs.

logits_processors = None
if self.logit_bias:
logit_bias: Dict[int, float] = {}
try:
for token_id, bias in self.logit_bias.items():
# Convert token_id to integer before we add to LLMEngine
# Clamp the bias between -100 and 100 per OpenAI API spec
logit_bias[int(token_id)] = min(100, max(-100, bias))
except ValueError as exc:
raise ValueError(f"Found token_id `{token_id}` in logit_bias "
f"but token_id must be an integer or string "
f"representing an integer") from exc

def logit_bias_logits_processor(
token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
for token_id, bias in logit_bias.items():
logits[token_id] += bias
return logits

logits_processors = [logit_bias_logits_processor]
logits_processors = get_logits_processors(
logit_bias=self.logit_bias,
allowed_token_ids=None,
tokenizer=tokenizer,
)

return SamplingParams(
n=self.n,
Expand Down Expand Up @@ -358,6 +346,7 @@ class CompletionRequest(OpenAIBaseModel):
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
allowed_token_ids: Optional[List[int]] = None
# doc: end-completion-sampling-params

# doc: begin-completion-extra-params
Expand Down Expand Up @@ -407,30 +396,14 @@ class CompletionRequest(OpenAIBaseModel):

# doc: end-completion-extra-params

def to_sampling_params(self):
def to_sampling_params(self, tokenizer: PreTrainedTokenizer):
echo_without_generation = self.echo and self.max_tokens == 0

logits_processors = None
if self.logit_bias:
logit_bias: Dict[int, float] = {}
try:
for token_id, bias in self.logit_bias.items():
# Convert token_id to integer
# Clamp the bias between -100 and 100 per OpenAI API spec
logit_bias[int(token_id)] = min(100, max(-100, bias))
except ValueError as exc:
raise ValueError(f"Found token_id `{token_id}` in logit_bias "
f"but token_id must be an integer or string "
f"representing an integer") from exc

def logit_bias_logits_processor(
token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
for token_id, bias in logit_bias.items():
logits[token_id] += bias
return logits

logits_processors = [logit_bias_logits_processor]
logits_processors = get_logits_processors(
logit_bias=self.logit_bias,
allowed_token_ids=self.allowed_token_ids,
tokenizer=tokenizer,
)

return SamplingParams(
n=self.n,
Expand Down
2 changes: 1 addition & 1 deletion vllm/entrypoints/openai/serving_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ async def create_chat_completion(

request_id = f"chat-{random_uuid()}"
try:
sampling_params = request.to_sampling_params()
sampling_params = request.to_sampling_params(tokenizer)
decoding_config = await self.engine.get_decoding_config()
guided_decoding_backend = request.guided_decoding_backend \
or decoding_config.guided_decoding_backend
Expand Down
2 changes: 1 addition & 1 deletion vllm/entrypoints/openai/serving_completion.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ async def create_completion(self, request: CompletionRequest,

tokenizer = await self.engine.get_tokenizer(lora_request)

sampling_params = request.to_sampling_params()
sampling_params = request.to_sampling_params(tokenizer)
decoding_config = await self.engine.get_decoding_config()
guided_decoding_backend = request.guided_decoding_backend \
or decoding_config.guided_decoding_backend
Expand Down
Loading