-
-
Notifications
You must be signed in to change notification settings - Fork 5.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Kernel][Core] Add AWQ support to the Marlin kernel #6612
Merged
robertgshaw2-redhat
merged 25 commits into
vllm-project:main
from
neuralmagic:awq_marlin_kernel
Jul 21, 2024
Merged
Changes from all commits
Commits
Show all changes
25 commits
Select commit
Hold shift + click to select a range
e88a264
tmp awq
alexm-redhat 8752a33
tmp commit
alexm-redhat 2b2dafa
sync
alexm-redhat f60c2d4
works!
alexm-redhat e11ad3f
sync
alexm-redhat c5dc524
group_size == -1 works
alexm-redhat f6814ed
4bit works
alexm-redhat 9b3d72d
towards 8bit
alexm-redhat a6c0aeb
sync
alexm-redhat 76c773b
8bit works
alexm-redhat 26569ac
starting repack
alexm-redhat c6e8e9b
sync
alexm-redhat 765327f
repack works
alexm-redhat 6396499
works
alexm-redhat 44ca58b
fixes
alexm-redhat cb5ebdf
sync
alexm-redhat df5e402
enable gptq back
alexm-redhat 39bb163
format
alexm-redhat 33ac053
restore offline inference
alexm-redhat 12c7cc6
add bfloat16 support
alexm-redhat c9a7364
fix
alexm-redhat 708e80d
fix gptq_marlin code-path
alexm-redhat f715544
rebase
alexm-redhat c94723d
fix
alexm-redhat 77cd807
fix test
alexm-redhat File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
#include "marlin.cuh" | ||
|
||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 | ||
|
||
namespace marlin { | ||
|
||
template <int const num_threads, int const num_bits, bool const has_perm> | ||
__global__ void awq_marlin_repack_kernel( | ||
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, | ||
int size_k, int size_n) {} | ||
|
||
} // namespace marlin | ||
|
||
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, | ||
int64_t size_k, int64_t size_n, | ||
int64_t num_bits) { | ||
TORCH_CHECK_NOT_IMPLEMENTED( | ||
false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0"); | ||
return torch::empty({1, 1}); | ||
} | ||
|
||
#else | ||
|
||
namespace marlin { | ||
|
||
template <int const num_threads, int const num_bits> | ||
__global__ void awq_marlin_repack_kernel( | ||
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, | ||
int size_k, int size_n) { | ||
constexpr int pack_factor = 32 / num_bits; | ||
|
||
int k_tiles = size_k / tile_k_size; | ||
int n_tiles = size_n / tile_n_size; | ||
int block_k_tiles = div_ceil(k_tiles, gridDim.x); | ||
|
||
int start_k_tile = blockIdx.x * block_k_tiles; | ||
if (start_k_tile >= k_tiles) { | ||
return; | ||
} | ||
|
||
int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles); | ||
|
||
// Wait until the next thread tile has been loaded to shared memory. | ||
auto wait_for_stage = [&]() { | ||
// We only have `stages - 2` active fetches since we are double buffering | ||
// and can only issue the next fetch when it is guaranteed that the previous | ||
// shared memory load is fully complete (as it may otherwise be | ||
// overwritten). | ||
cp_async_wait<repack_stages - 2>(); | ||
__syncthreads(); | ||
}; | ||
|
||
extern __shared__ int4 sh[]; | ||
|
||
constexpr int tile_n_ints = tile_n_size / pack_factor; | ||
|
||
constexpr int stage_n_threads = tile_n_ints / 4; | ||
constexpr int stage_k_threads = tile_k_size; | ||
constexpr int stage_size = stage_k_threads * stage_n_threads; | ||
|
||
auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) { | ||
if (n_tile_id >= n_tiles) { | ||
cp_async_fence(); | ||
return; | ||
} | ||
|
||
int first_n = n_tile_id * tile_n_size; | ||
int first_n_packed = first_n / pack_factor; | ||
|
||
int4* sh_ptr = sh + stage_size * pipe; | ||
|
||
if (threadIdx.x < stage_size) { | ||
int k_id = threadIdx.x / stage_n_threads; | ||
int n_id = threadIdx.x % stage_n_threads; | ||
|
||
int first_k = k_tile_id * tile_k_size; | ||
|
||
cp_async4(&sh_ptr[k_id * stage_n_threads + n_id], | ||
reinterpret_cast<int4 const*>( | ||
&(b_q_weight_ptr[(first_k + k_id) * (size_n / pack_factor) + | ||
first_n_packed + (n_id * 4)]))); | ||
} | ||
|
||
cp_async_fence(); | ||
}; | ||
|
||
auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) { | ||
if (n_tile_id >= n_tiles) { | ||
return; | ||
} | ||
|
||
int warp_id = threadIdx.x / 32; | ||
int th_id = threadIdx.x % 32; | ||
|
||
if (warp_id >= 4) { | ||
return; | ||
} | ||
|
||
int tc_col = th_id / 4; | ||
int tc_row = (th_id % 4) * 2; | ||
|
||
constexpr int tc_offsets[4] = {0, 1, 8, 9}; | ||
|
||
int cur_n = warp_id * 16 + tc_col; | ||
int cur_n_packed = cur_n / pack_factor; | ||
int cur_n_pos = cur_n % pack_factor; | ||
|
||
constexpr int sh_stride = tile_n_ints; | ||
constexpr uint32_t mask = (1 << num_bits) - 1; | ||
|
||
int4* sh_stage_ptr = sh + stage_size * pipe; | ||
uint32_t* sh_stage_int_ptr = reinterpret_cast<uint32_t*>(sh_stage_ptr); | ||
|
||
// Undo interleaving | ||
int cur_n_pos_unpacked; | ||
if constexpr (num_bits == 4) { | ||
constexpr int undo_pack[8] = {0, 4, 1, 5, 2, 6, 3, 7}; | ||
cur_n_pos_unpacked = undo_pack[cur_n_pos]; | ||
} else { | ||
constexpr int undo_pack[4] = {0, 2, 1, 3}; | ||
cur_n_pos_unpacked = undo_pack[cur_n_pos]; | ||
} | ||
|
||
uint32_t vals[8]; | ||
#pragma unroll | ||
for (int i = 0; i < 4; i++) { | ||
int cur_elem = tc_row + tc_offsets[i]; | ||
|
||
int packed_src_0 = sh_stage_int_ptr[cur_n_packed + sh_stride * cur_elem]; | ||
int packed_src_1 = sh_stage_int_ptr[cur_n_packed + (8 / pack_factor) + | ||
sh_stride * cur_elem]; | ||
|
||
vals[i] = (packed_src_0 >> (cur_n_pos_unpacked * num_bits)) & mask; | ||
vals[4 + i] = (packed_src_1 >> (cur_n_pos_unpacked * num_bits)) & mask; | ||
} | ||
|
||
constexpr int tile_size = tile_k_size * tile_n_size / pack_factor; | ||
int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size; | ||
|
||
// Result of: | ||
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h | ||
if constexpr (num_bits == 4) { | ||
constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7}; | ||
|
||
uint32_t res = 0; | ||
#pragma unroll | ||
for (int i = 0; i < 8; i++) { | ||
res |= vals[pack_idx[i]] << (i * 4); | ||
} | ||
|
||
out_ptr[out_offset + th_id * 4 + warp_id] = res; | ||
|
||
} else { | ||
constexpr int pack_idx[4] = {0, 2, 1, 3}; | ||
|
||
uint32_t res1 = 0; | ||
uint32_t res2 = 0; | ||
#pragma unroll | ||
for (int i = 0; i < 4; i++) { | ||
res1 |= vals[pack_idx[i]] << (i * 8); | ||
res2 |= vals[4 + pack_idx[i]] << (i * 8); | ||
} | ||
|
||
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1; | ||
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2; | ||
} | ||
}; | ||
|
||
auto start_pipes = [&](int k_tile_id, int n_tile_id) { | ||
#pragma unroll | ||
for (int pipe = 0; pipe < repack_stages - 1; pipe++) { | ||
fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe); | ||
} | ||
|
||
wait_for_stage(); | ||
}; | ||
#pragma unroll | ||
for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) { | ||
int n_tile_id = 0; | ||
|
||
start_pipes(k_tile_id, n_tile_id); | ||
|
||
while (n_tile_id < n_tiles) { | ||
#pragma unroll | ||
for (int pipe = 0; pipe < repack_stages; pipe++) { | ||
fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id, | ||
n_tile_id + pipe + repack_stages - 1); | ||
repack_tile(pipe, k_tile_id, n_tile_id + pipe); | ||
wait_for_stage(); | ||
} | ||
n_tile_id += repack_stages; | ||
} | ||
} | ||
} | ||
|
||
} // namespace marlin | ||
|
||
#define CALL_IF(NUM_BITS) \ | ||
else if (num_bits == NUM_BITS) { \ | ||
cudaFuncSetAttribute( \ | ||
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS>, \ | ||
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ | ||
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS> \ | ||
<<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \ | ||
b_q_weight_ptr, out_ptr, size_k, size_n); \ | ||
} | ||
|
||
torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, | ||
int64_t size_n, int64_t num_bits) { | ||
// Verify compatibility with marlin tile of 16x64 | ||
TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k, | ||
" is not divisible by tile_k_size = ", marlin::tile_k_size); | ||
TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n, | ||
" is not divisible by tile_n_size = ", marlin::tile_n_size); | ||
|
||
TORCH_CHECK(num_bits == 4 || num_bits == 8, | ||
"num_bits must be 4 or 8. Got = ", num_bits); | ||
int const pack_factor = 32 / num_bits; | ||
|
||
// Verify B | ||
TORCH_CHECK(b_q_weight.size(0) == size_k, | ||
"b_q_weight.size(0) = ", b_q_weight.size(0), | ||
" is not size_k = ", size_k); | ||
TORCH_CHECK((size_n / pack_factor) == b_q_weight.size(1), | ||
"Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1), | ||
", size_n = ", size_n, ", pack_factor = ", pack_factor); | ||
|
||
// Verify device and strides | ||
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); | ||
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); | ||
TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt"); | ||
|
||
// Alloc buffers | ||
const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight)); | ||
auto options = torch::TensorOptions() | ||
.dtype(b_q_weight.dtype()) | ||
.device(b_q_weight.device()); | ||
torch::Tensor out = torch::empty( | ||
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, | ||
options); | ||
|
||
// Get ptrs | ||
uint32_t const* b_q_weight_ptr = | ||
reinterpret_cast<uint32_t const*>(b_q_weight.data_ptr()); | ||
uint32_t* out_ptr = reinterpret_cast<uint32_t*>(out.data_ptr()); | ||
|
||
// Get dev info | ||
int dev = b_q_weight.get_device(); | ||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev); | ||
int blocks; | ||
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev); | ||
|
||
int max_shared_mem = 0; | ||
cudaDeviceGetAttribute(&max_shared_mem, | ||
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); | ||
TORCH_CHECK(max_shared_mem > 0); | ||
|
||
if (false) { | ||
} | ||
CALL_IF(4) | ||
CALL_IF(8) | ||
else { | ||
TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits); | ||
} | ||
|
||
return out; | ||
} | ||
|
||
#endif |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
How is this different from GPTQ? It looks similar to me at a glance
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The internal unpacking is different: AWQ packs over columns, while GPTQ over rows, and also AWQ performs the interleaving of groups of 8 (for 4-bit) or groups of 4 (for 8-bit) to be compatible to the de-quantization PTX assembly.