Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix] Add kv_scale input parameter to CPU backend #3840

Merged
merged 3 commits into from
Apr 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions csrc/cpu/attention.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -419,7 +419,8 @@ void paged_attention_v1(torch::Tensor &out, torch::Tensor &query,
torch::Tensor &context_lens, int block_size,
int max_context_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype) {
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
Expand Down Expand Up @@ -734,7 +735,8 @@ void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums,
torch::Tensor &context_lens, int block_size,
int max_context_len,
const c10::optional<torch::Tensor> &alibi_slopes,
const std::string &kv_cache_dtype) {
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
Expand Down
4 changes: 3 additions & 1 deletion csrc/cpu/cache.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,9 @@ void copy_blocks(std::vector<torch::Tensor> &key_caches,
void reshape_and_cache(torch::Tensor &key, torch::Tensor &value,
torch::Tensor &key_cache, torch::Tensor &value_cache,
torch::Tensor &slot_mapping,
const std::string &kv_cache_dtype) {
const std::string &kv_cache_dtype, float kv_scale) {
TORCH_CHECK(kv_scale == 1.0f);

int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
Expand Down
5 changes: 4 additions & 1 deletion vllm/attention/backends/torch_sdpa.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,7 @@ def forward(
value: torch.Tensor,
kv_cache: Optional[torch.Tensor],
attn_metadata: TorchSDPAMetadata,
kv_scale: float,
) -> torch.Tensor:
"""Forward pass with torch SDPA and PagedAttention.

Expand All @@ -138,7 +139,8 @@ def forward(
PagedAttention.write_to_paged_cache(key, value, key_cache,
value_cache,
attn_metadata.slot_mapping,
attn_metadata.kv_cache_dtype)
attn_metadata.kv_cache_dtype,
kv_scale)

if attn_metadata.is_prompt:
if (kv_cache is None or attn_metadata.block_tables.numel() == 0):
Expand Down Expand Up @@ -199,6 +201,7 @@ def forward(
self.num_kv_heads,
self.scale,
self.alibi_slopes,
kv_scale,
)

# Reshape the output tensor.
Expand Down
2 changes: 1 addition & 1 deletion vllm/attention/ops/paged_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def forward_decode(
num_kv_heads: int,
scale: float,
alibi_slopes: Optional[torch.Tensor],
kv_scale,
kv_scale: float,
) -> torch.Tensor:
output = torch.empty_like(query)

Expand Down
Loading