Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for Cohere's Command-R model #3433

Merged
merged 11 commits into from
Mar 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
Expand Down
337 changes: 337 additions & 0 deletions vllm/model_executor/models/commandr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,337 @@
# coding=utf-8
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file is based on the LLama model definition file in transformers
"""PyTorch Cohere model."""
from typing import List, Optional, Tuple

import torch
import torch.utils.checkpoint
from torch import nn
from transformers import CohereConfig
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS

from vllm.attention import Attention, AttentionMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


class LayerNorm(nn.Module):

def __init__(self, hidden_size, eps=1e-5, bias=False):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None
self.variance_epsilon = eps

def forward(self, hidden_states, residuals=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
mean = hidden_states.mean(-1, keepdim=True)
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
hidden_states = (hidden_states -
mean) * torch.rsqrt(variance + self.variance_epsilon)
hidden_states = self.weight.to(torch.float32) * hidden_states
if self.bias is not None:
hidden_states = hidden_states + self.bias.to(torch.float32)
return hidden_states.to(input_dtype), residuals


ALL_LAYERNORM_LAYERS.append(LayerNorm)


# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
class CohereMLP(nn.Module):

def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
linear_method=linear_method,
)
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
linear_method=linear_method,
)
self.act_fn = SiluAndMul()

def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x


class CohereAttention(nn.Module):

def __init__(
self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
tp_size = get_tensor_model_parallel_world_size()
self.config = config
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.total_num_heads = config.num_attention_heads
self.num_heads = self.total_num_heads // tp_size
self.head_dim = self.hidden_size // self.total_num_heads
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.rope_scaling = getattr(config, "rope_scaling", None)
self.is_causal = True
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
self.hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
rope_scaling=self.rope_scaling,
is_neox_style=False,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output


class CohereDecoderLayer(nn.Module):

def __init__(self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.hidden_size = config.hidden_size

self.self_attn = CohereAttention(config, linear_method=linear_method)

self.mlp = CohereMLP(config, linear_method=linear_method)
self.input_layernorm = LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states_attention = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states_mlp = self.mlp(hidden_states)
# Add everything together
hidden_states = residual + hidden_states_attention + hidden_states_mlp

return hidden_states, residual


class CohereModel(nn.Module):

def __init__(
self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.layers = nn.ModuleList([
CohereDecoderLayer(config, linear_method=linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
attn_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states


class CohereForCausalLM(nn.Module):

def __init__(
self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.unpadded_vocab_size = config.vocab_size
self.linear_method = linear_method
self.logits_processor = LogitsProcessor(config.vocab_size,
scale=config.logit_scale)
self.model = CohereModel(config, linear_method)
self.sampler = Sampler()

@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata)
return hidden_states

def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.model.embed_tokens.weight,
hidden_states, sampling_metadata)
return logits

def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens

def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params = set()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
for param_name, shard_name, shard_id in stacked_params_mapping:
if shard_name not in name:
continue
name = name.replace(shard_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
Loading