Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Support for 2/3/8-bit GPTQ Quantization Models #2330

Merged
merged 8 commits into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions csrc/ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -98,11 +98,13 @@ torch::Tensor gptq_gemm(
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama);
bool use_exllama,
int bit);

void gptq_shuffle(
torch::Tensor q_weight,
torch::Tensor q_perm);
torch::Tensor q_perm,
int bit);

void moe_align_block_size(
torch::Tensor topk_ids,
Expand Down
123 changes: 123 additions & 0 deletions csrc/quantization/gptq/matrix_view.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -146,6 +146,129 @@ public:
__device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; }
};

class MatrixView_q2_row
{
public:
const uint32_t* data;
const int height;
const int width;

__device__ __forceinline__ MatrixView_q2_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }

__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x0f) * 2;
return (data[row * width / 16 + column / 16] >> shift) & 0x03;
}

__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x0f) * 2;
uint32_t d = data[row * width / 16 + column / 16] >> shift;
items[0] = d & 0x03;
items[1] = (d >> 2) & 0x03;
}

__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x0f) * 2;
uint32_t d = data[row * width / 16 + column / 16] >> shift;
items[0] = d & 0x03;
items[1] = (d >> 2) & 0x03;
items[2] = (d >> 4) & 0x03;
items[3] = (d >> 6) & 0x03;
}
};

class MatrixView_q3_row
{
public:
const uint32_t* data;
const int height;
const int width;

__device__ __forceinline__ MatrixView_q3_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }

__device__ __forceinline__ int item(int row, int column) const
{
int z_w = column * 3 / 32;
int z_mod = column & 0x1f;

if (z_mod == 10) {
return (data[row * width * 3 / 32 + z_w] >> 30) | ((data[row * width * 3 / 32 + (z_w + 1)] << 2) & 0x4);
} else if (z_mod == 21) {
return (data[row * width * 3 / 32 + z_w] >> 31) | ((data[row * width * 3 / 32 + (z_w + 1)] << 1) & 0x6);
} else if (z_mod < 10) {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3)) & 0x07;
} else if (z_mod < 21) {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 32)) & 0x07;
} else {
return (data[row * width * 3 / 32 + z_w] >> (z_mod * 3 - 64)) & 0x07;
}
}

__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x1f);
uint32_t d;
if (shift <= 4) {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3);
} else if (shift == 8) {
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 24) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0x0f) << 8);
} else if (shift <= 16) {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 32);
} else if (shift == 20) {
d = (data[row * width / 32 * 3 + column * 3 / 32] >> 28) | ((data[row * width / 32 * 3 + column * 3 / 32 + 1] & 0xff) << 4);
} else {
d = data[row * width / 32 * 3 + column * 3 / 32] >> (shift * 3 - 64);
}
items[0] = d & 0x07;
items[1] = (d >> 3) & 0x07;
items[2] = (d >> 6) & 0x07;
items[3] = (d >> 9) & 0x07;
}
};

class MatrixView_q8_row
{
public:
const uint32_t* data;
const int height;
const int width;

__device__ __forceinline__ MatrixView_q8_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }

__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x03) * 8;
return (data[row * width / 4 + column / 4] >> shift) & 0xff;
}

__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x03) * 8;
uint32_t d = data[row * width / 4 + column / 4] >> shift;
items[0] = d & 0xff;
items[1] = (d >> 8) & 0xff;
}

__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x03) * 2;
uint32_t d = data[row * width / 4 + column / 4] >> shift;
items[0] = d & 0xff;
items[1] = (d >> 8) & 0xff;
items[2] = (d >> 16) & 0xff;
items[3] = (d >> 24) & 0xff;
}
};

} // namespace gptq
} // namespace vllm
#endif
Loading
Loading