-
-
Notifications
You must be signed in to change notification settings - Fork 5.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Benchmark] guided decoding #10046
Closed
Closed
[Benchmark] guided decoding #10046
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change | ||
---|---|---|---|---|
@@ -0,0 +1,326 @@ | ||||
"""Benchmark guided decoding throughput.""" | ||||
import argparse | ||||
import json | ||||
import random | ||||
import time | ||||
from typing import List | ||||
|
||||
import uvloop | ||||
from transformers import AutoTokenizer | ||||
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs | ||||
from vllm.entrypoints.openai.api_server import ( | ||||
build_async_engine_client_from_engine_args) | ||||
from vllm.sampling_params import GuidedDecodingParams | ||||
from vllm.utils import FlexibleArgumentParser, merge_async_iterators | ||||
|
||||
SCHEMA = { | ||||
"$schema": | ||||
"https://json-schema.org/draft/2020-12/schema", | ||||
"title": | ||||
"User Profile", | ||||
"type": | ||||
"object", | ||||
"properties": { | ||||
"userId": { | ||||
"type": "string", | ||||
"description": "Unique identifier for the user." | ||||
}, | ||||
"personalInfo": { | ||||
"type": "object", | ||||
"properties": { | ||||
"firstName": { | ||||
"type": "string", | ||||
"description": "The user's first name." | ||||
}, | ||||
"lastName": { | ||||
"type": "string", | ||||
"description": "The user's last name." | ||||
}, | ||||
"age": { | ||||
"type": "integer", | ||||
"minimum": 0, | ||||
"description": "The user's age." | ||||
}, | ||||
"phoneNumbers": { | ||||
"type": | ||||
"array", | ||||
"items": { | ||||
"type": "object", | ||||
"properties": { | ||||
"type": { | ||||
"type": "string", | ||||
"enum": ["home", "work", "mobile"], | ||||
"description": "Type of phone number." | ||||
}, | ||||
"number": { | ||||
"type": "string", | ||||
"pattern": "^\\+?[1-9]\\d{1,14}$", | ||||
"description": "Phone number in E.164 format." | ||||
} | ||||
}, | ||||
"required": ["type", "number"] | ||||
}, | ||||
"description": | ||||
"List of phone numbers associated with the user." | ||||
} | ||||
}, | ||||
"required": ["firstName", "lastName"] | ||||
}, | ||||
"address": { | ||||
"type": "object", | ||||
"properties": { | ||||
"street": { | ||||
"type": "string", | ||||
"description": "Street address." | ||||
}, | ||||
"city": { | ||||
"type": "string", | ||||
"description": "City name." | ||||
}, | ||||
"state": { | ||||
"type": "string", | ||||
"description": "State or province." | ||||
}, | ||||
"postalCode": { | ||||
"type": "string", | ||||
"pattern": "^\\d{5}(-\\d{4})?$", | ||||
"description": "Postal code." | ||||
}, | ||||
"country": { | ||||
"type": "string", | ||||
"description": "Country name." | ||||
} | ||||
}, | ||||
"required": ["street", "city", "state", "postalCode", "country"] | ||||
}, | ||||
"preferences": { | ||||
"type": "object", | ||||
"properties": { | ||||
"newsletterSubscribed": { | ||||
"type": | ||||
"boolean", | ||||
"description": | ||||
"Indicates if the user is subscribed to the newsletter." | ||||
}, | ||||
"favoriteCategories": { | ||||
"type": "array", | ||||
"items": { | ||||
"type": "string" | ||||
}, | ||||
"description": "List of user's favorite categories." | ||||
} | ||||
}, | ||||
"required": ["newsletterSubscribed"] | ||||
}, | ||||
"accountStatus": { | ||||
"type": "string", | ||||
"enum": ["active", "inactive", "suspended"], | ||||
"description": "Current status of the user's account." | ||||
}, | ||||
"registrationDate": { | ||||
"type": "string", | ||||
"format": "date-time", | ||||
"description": "ISO 8601 formatted date-time of user registration." | ||||
} | ||||
}, | ||||
"required": | ||||
["userId", "personalInfo", "address", "accountStatus", "registrationDate"] | ||||
} | ||||
|
||||
|
||||
def run_vllm( | ||||
requests: List[tuple[str, int, int]], | ||||
engine_args: EngineArgs, | ||||
n: int, | ||||
guided_decoding: bool = False, | ||||
warmup: bool = False, | ||||
) -> float: | ||||
from vllm import LLM, SamplingParams | ||||
llm = LLM(**vars(engine_args)) | ||||
|
||||
# Add the requests to the engine. | ||||
prompts: List[str] = [] | ||||
sampling_params: List[SamplingParams] = [] | ||||
for prompt, _, output_len in requests: | ||||
prompts.append(prompt) | ||||
sampling_params.append( | ||||
SamplingParams( | ||||
n=n, | ||||
temperature=1.0, | ||||
top_p=1.0, | ||||
ignore_eos=True, | ||||
max_tokens=output_len, | ||||
guided_decoding=GuidedDecodingParams( | ||||
json=SCHEMA) if guided_decoding else None, | ||||
)) | ||||
|
||||
start = time.perf_counter() | ||||
llm.generate(prompts, sampling_params, use_tqdm=True) | ||||
end = time.perf_counter() | ||||
return end - start | ||||
|
||||
|
||||
async def run_vllm_async( | ||||
requests: List[tuple[str, int, int]], | ||||
engine_args: AsyncEngineArgs, | ||||
n: int, | ||||
guided_decoding: bool = False, | ||||
warmup: bool = False, | ||||
disable_frontend_multiprocessing: bool = False, | ||||
) -> float: | ||||
from vllm import SamplingParams | ||||
|
||||
async with build_async_engine_client_from_engine_args( | ||||
engine_args, disable_frontend_multiprocessing) as llm: | ||||
|
||||
# Add the requests to the engine. | ||||
prompts: List[str] = [] | ||||
sampling_params: List[SamplingParams] = [] | ||||
if warmup: | ||||
print("Running warmup prompt, for the first 5") | ||||
# We setup the first 5 requests to warmup FSM | ||||
warmup_requests = requests[:5] | ||||
requests = requests[5:] | ||||
for prompt, _, output_len in warmup_requests: | ||||
prompts.append(prompt) | ||||
sampling_params.append( | ||||
SamplingParams( | ||||
n=n, | ||||
temperature=1.0, | ||||
top_p=1.0, | ||||
ignore_eos=True, | ||||
max_tokens=output_len, | ||||
guided_decoding=GuidedDecodingParams( | ||||
json=SCHEMA) if guided_decoding else None, | ||||
)) | ||||
generators = [] | ||||
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)): | ||||
generator = llm.generate(prompt, sp, request_id=f"test{i}") | ||||
generators.append(generator) | ||||
all_gens = merge_async_iterators(*generators) | ||||
async for i, res in all_gens: | ||||
pass | ||||
|
||||
prompts = [] | ||||
sampling_params = [] | ||||
for prompt, _, output_len in requests: | ||||
prompts.append(prompt) | ||||
sampling_params.append( | ||||
SamplingParams( | ||||
n=n, | ||||
temperature=1.0, | ||||
top_p=1.0, | ||||
ignore_eos=True, | ||||
max_tokens=output_len, | ||||
guided_decoding=GuidedDecodingParams( | ||||
json=SCHEMA) if guided_decoding else None, | ||||
)) | ||||
|
||||
generators = [] | ||||
start = time.perf_counter() | ||||
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)): | ||||
generator = llm.generate(prompt, sp, request_id=f"test{i}") | ||||
generators.append(generator) | ||||
all_gens = merge_async_iterators(*generators) | ||||
async for i, res in all_gens: | ||||
pass | ||||
end = time.perf_counter() | ||||
return end - start | ||||
|
||||
|
||||
def main(args: argparse.Namespace): | ||||
print(args) | ||||
random.seed(args.seed) | ||||
|
||||
# Synthesize a prompt with the given input length. | ||||
tokenizer = AutoTokenizer.from_pretrained( | ||||
args.tokenizer, trust_remote_code=args.trust_remote_code) | ||||
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(SCHEMA)}" # noqa: E501 | ||||
input_len = len(tokenizer(prompt).input_ids) | ||||
print(f"Input length of the prompt: {input_len} tokens") | ||||
requests = [(prompt, input_len, args.output_len) | ||||
for _ in range(args.num_prompts)] | ||||
|
||||
if args.async_engine: | ||||
engine_args = AsyncEngineArgs.from_cli_args(args) | ||||
elapsed_time = uvloop.run( | ||||
run_vllm_async( | ||||
requests, | ||||
engine_args, | ||||
args.n, | ||||
args.guided_decoding, | ||||
args.warmup, | ||||
args.disable_frontend_multiprocessing, | ||||
)) | ||||
else: | ||||
engine_args = EngineArgs.from_cli_args(args) | ||||
elapsed_time = run_vllm( | ||||
requests, | ||||
engine_args, | ||||
args.n, | ||||
args.guided_decoding, | ||||
args.warmup, | ||||
) | ||||
|
||||
total_num_tokens = sum(prompt_len + output_len | ||||
for _, prompt_len, output_len in requests) | ||||
total_output_tokens = sum(output_len for _, _, output_len in requests) | ||||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, " | ||||
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, " | ||||
f"{total_output_tokens / elapsed_time:.2f} output tokens/s") | ||||
|
||||
# Output JSON results if specified | ||||
if args.output_json: | ||||
results = { | ||||
"elapsed_time": elapsed_time, | ||||
"num_requests": len(requests), | ||||
"total_num_tokens": total_num_tokens, | ||||
"requests_per_second": len(requests) / elapsed_time, | ||||
"tokens_per_second": total_num_tokens / elapsed_time, | ||||
} | ||||
with open(args.output_json, "w") as f: | ||||
json.dump(results, f, indent=4) | ||||
|
||||
|
||||
if __name__ == "__main__": | ||||
parser = FlexibleArgumentParser(description="Benchmark guided decoding.") | ||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you replace most of these duplicated arguments with the engine's args, like we use in other benchmark scripts? vllm/benchmarks/benchmark_throughput.py Line 412 in ac49b59
|
||||
parser = AsyncEngineArgs.add_cli_args(parser) | ||||
|
||||
parser.add_argument("--output-len", | ||||
type=int, | ||||
help="Output length for each request. Overrides the " | ||||
"output length from the dataset.") | ||||
parser.add_argument("--n", | ||||
type=int, | ||||
default=1, | ||||
help="Number of generated sequences per prompt.") | ||||
parser.add_argument("--num-prompts", | ||||
type=int, | ||||
default=10, | ||||
help="Number of prompts to process.") | ||||
parser.add_argument( | ||||
'--output-json', | ||||
type=str, | ||||
default=None, | ||||
help='Path to save the throughput results in JSON format.') | ||||
parser.add_argument("--async-engine", | ||||
action='store_true', | ||||
default=False, | ||||
help="Use vLLM async engine rather than LLM class.") | ||||
parser.add_argument("--guided-decoding", | ||||
action='store_true', | ||||
default=False, | ||||
help="Whether to enable JSON decoding or not.") | ||||
parser.add_argument("--disable-frontend-multiprocessing", | ||||
action='store_true', | ||||
default=False, | ||||
help="Disable decoupled async engine frontend.") | ||||
parser.add_argument("--warmup", | ||||
action="store_true", | ||||
default=False, | ||||
help="Run warmup prompts before benchmark.") | ||||
args = parser.parse_args() | ||||
if args.tokenizer is None: | ||||
args.tokenizer = args.model | ||||
main(args) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
how about adding a 'result_file_name' with --save-results in argument list for result accuracy check