-
-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Neuron] add custom_ops for neuron backend
Co-authored-by: George Novack <[email protected]> Co-authored-by: Aoyu Zhang <[email protected]> Signed-off-by: Liangfu Chen <[email protected]>
- Loading branch information
1 parent
d84cef7
commit ef47583
Showing
9 changed files
with
324 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import pytest | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
from vllm.model_executor.layers.activation import FastGELU, SiluAndMul | ||
from vllm.platforms import current_platform | ||
|
||
|
||
@pytest.mark.parametrize("activation", ["silu_and_mul", "gelu_fast"]) | ||
@pytest.mark.parametrize("num_tokens,d,dtype", [ | ||
(7, 512, torch.half), | ||
(7, 512, torch.float), | ||
(83, 512, torch.half), | ||
]) | ||
@torch.inference_mode() | ||
def test_act_and_mul( | ||
activation: str, | ||
num_tokens: int, | ||
d: int, | ||
dtype: torch.dtype, | ||
) -> None: | ||
import torch_xla.core.xla_model as xm | ||
|
||
device = xm.xla_device() | ||
current_platform.seed_everything(0) | ||
torch.set_default_device("cpu") | ||
x = torch.randn(num_tokens, 2 * d, dtype=dtype).to(device=device) | ||
if activation == "silu_and_mul": | ||
layer = SiluAndMul() | ||
|
||
def _silu_and_mul(x: torch.Tensor) -> torch.Tensor: | ||
assert x.is_cpu, "reference input is expected be executed on cpu." | ||
d = x.shape[-1] // 2 | ||
return F.silu(x[..., :d]) * x[..., d:] | ||
|
||
fn = _silu_and_mul | ||
elif activation == "gelu_fast": | ||
layer = FastGELU() | ||
fn = F.gelu | ||
else: | ||
raise NotImplementedError( | ||
f"activation {activation} is not implemented.") | ||
assert x.is_xla, "input tensor under testing is expected to be XLA tensor." | ||
out = layer.to(device=device).forward_neuron(x) | ||
ref_out = fn(x.cpu()) | ||
torch.testing.assert_close(out.cpu(), ref_out, atol=0.01, rtol=0.0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import pytest | ||
import torch | ||
|
||
from vllm.model_executor.layers.layernorm import RMSNorm | ||
from vllm.platforms import current_platform | ||
|
||
|
||
@pytest.mark.parametrize("num_tokens,hidden_size,add_residual,dtype", [ | ||
(7, 8, False, torch.half), | ||
(83, 768, False, torch.half), | ||
(83, 768, True, torch.half), | ||
(83, 768, True, torch.bfloat16), | ||
(83, 768, True, torch.float32), | ||
]) | ||
@torch.inference_mode() | ||
def test_rms_norm( | ||
num_tokens: int, | ||
hidden_size: int, | ||
add_residual: bool, | ||
dtype: torch.dtype, | ||
) -> None: | ||
import torch_xla.core.xla_model as xm | ||
|
||
device = xm.xla_device() | ||
current_platform.seed_everything(0) | ||
torch.set_default_device("cpu") | ||
layer = RMSNorm(hidden_size).to(dtype=dtype) | ||
layer.weight.data.normal_(mean=1.0, std=0.1) | ||
scale = 1 / (2 * hidden_size) | ||
x = torch.randn(num_tokens, hidden_size, dtype=dtype).to(device=device) | ||
x *= scale | ||
residual = torch.randn_like(x) * scale if add_residual else None | ||
|
||
residual_cpu = residual.cpu() if add_residual else None | ||
ref_out = layer.to(device="cpu").forward_native(x.cpu(), residual_cpu) | ||
assert x.is_xla, "input tensor under testing is expected to be XLA tensor." | ||
out = layer.to(device=device)(x, residual) | ||
|
||
# NOTE(woosuk): LayerNorm operators (including RMS) typically have larger | ||
# numerical errors than other operators because they involve reductions. | ||
# Therefore, we use a larger tolerance. | ||
if add_residual: | ||
assert out[0].is_xla, "output tensor is expected to be XLA tensor" | ||
torch.testing.assert_close(out[0].cpu(), | ||
ref_out[0], | ||
atol=1e-2, | ||
rtol=1e-2) | ||
torch.testing.assert_close(out[1].cpu(), | ||
ref_out[1], | ||
atol=1e-2, | ||
rtol=1e-2) | ||
else: | ||
assert out.is_xla, "output tensor is expected to be XLA tensor" | ||
torch.testing.assert_close(out.cpu(), ref_out, atol=1e-2, rtol=1e-2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import random | ||
from typing import Tuple | ||
from unittest.mock import patch | ||
|
||
import pytest | ||
import torch | ||
|
||
from vllm.model_executor.layers.logits_processor import LogitsProcessor | ||
from vllm.model_executor.sampling_metadata import SamplingMetadata | ||
from vllm.model_executor.utils import set_random_seed | ||
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata | ||
from vllm.utils import is_pin_memory_available | ||
|
||
|
||
class MockLogitsProcessor(LogitsProcessor): | ||
|
||
def __init__(self, vocab_size: int, scale: float, | ||
fake_logits: torch.Tensor): | ||
super().__init__(vocab_size=vocab_size, scale=scale) | ||
self.fake_logits = fake_logits.clone() | ||
|
||
def forward(self, *args, **kwargs): | ||
with patch( | ||
"vllm.model_executor.layers.logits_processor._prune_hidden_states", | ||
lambda x, y: x | ||
), patch( | ||
"vllm.model_executor.layers.logits_processor.LogitsProcessor._get_logits", | ||
lambda *args, **kwargs: self.fake_logits): | ||
return super().forward(*args, **kwargs) | ||
|
||
|
||
def _prepare_test( | ||
batch_size: int | ||
) -> Tuple[torch.Tensor, torch.Tensor, MockLogitsProcessor]: | ||
vocab_size = 32000 | ||
input_tensor = torch.rand((batch_size, 1024), dtype=torch.float16) | ||
fake_logits = torch.full((batch_size, vocab_size), | ||
1e-2, | ||
dtype=input_tensor.dtype) | ||
logits_processor = MockLogitsProcessor(32000, 0.5, fake_logits) | ||
return input_tensor, fake_logits, logits_processor | ||
|
||
|
||
RANDOM_SEEDS = list(range(8)) | ||
|
||
|
||
@pytest.mark.parametrize("seed", RANDOM_SEEDS) | ||
def test_logits_processors(seed: int): | ||
import torch_xla.core.xla_model as xm | ||
|
||
device = xm.xla_device() | ||
set_random_seed(seed) | ||
torch.set_default_device("cpu") | ||
batch_size = random.randint(1, 256) | ||
input_tensor, fake_logits, logits_processor = _prepare_test(batch_size) | ||
|
||
# This sample logits processor gives infinite score to the i-th token, | ||
# where i is the length of the input sequence. | ||
# We therefore expect the output token sequence to be [0, 1, 2, ...] | ||
def pick_ith(token_ids, logits): | ||
logits[len(token_ids)] = float("inf") | ||
return logits | ||
|
||
seq_group_metadata_list = [] | ||
seq_lens = [] | ||
for i in range(batch_size): | ||
seq_group_metadata_list.append( | ||
SequenceGroupMetadata( | ||
request_id=f"test_{i}", | ||
is_prompt=True, | ||
seq_data={0: SequenceData.from_seqs([1, 2, 3])}, | ||
sampling_params=SamplingParams(temperature=0, | ||
logits_processors=[pick_ith]), | ||
block_tables={0: [1]}, | ||
)) | ||
seq_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len()) | ||
|
||
sampling_metadata = SamplingMetadata.prepare( | ||
seq_group_metadata_list, | ||
seq_lens, | ||
query_lens=seq_lens, | ||
device=device, | ||
pin_memory=is_pin_memory_available()) | ||
logits_processor_output = logits_processor( | ||
lm_head=None, | ||
hidden_states=input_tensor, | ||
sampling_metadata=sampling_metadata) | ||
|
||
fake_logits *= logits_processor.scale | ||
torch.testing.assert_close(logits_processor_output[:, 1], | ||
fake_logits[:, 1], | ||
rtol=1e-4, | ||
atol=0.0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
""" | ||
Tests for miscellaneous utilities | ||
""" | ||
|
||
import pytest | ||
import torch | ||
|
||
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding | ||
from vllm.platforms import current_platform | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"max_position,is_neox_style,rotary_dim,head_size,seq_len", [ | ||
(11, False, 32, 32, 1024), | ||
]) | ||
def test_rotary_embedding_opcheck(max_position, is_neox_style, rotary_dim, | ||
head_size, seq_len): | ||
import torch_xla.core.xla_model as xm | ||
|
||
device = xm.xla_device() | ||
current_platform.seed_everything(0) | ||
torch.set_default_device("cpu") | ||
|
||
batch_size = 1 | ||
base = 10000 | ||
num_heads = 7 | ||
|
||
rot = RotaryEmbedding(head_size, rotary_dim, max_position, base, | ||
is_neox_style, torch.float32) | ||
|
||
positions = torch.randint(0, | ||
max_position, (batch_size, seq_len), | ||
device="cpu") | ||
query = torch.randn(batch_size, | ||
seq_len, | ||
num_heads * head_size, | ||
dtype=torch.float32, | ||
device="cpu") | ||
key = torch.randn_like(query) | ||
|
||
# rotary_embedding_opcheck(rot, positions, query, key) | ||
assert positions.is_cpu, \ | ||
"reference input tensor is expected to be CPU tensor." | ||
ref_query, ref_key = rot.to(device="cpu").forward_native( | ||
positions, query, key) | ||
out_query, out_key = rot.to(device=device).forward_neuron( | ||
positions.to(device=device), query.to(device=device), | ||
key.to(device=device)) | ||
assert out_query.is_xla and out_key.is_xla, \ | ||
"output tensor is expected to be XLA tensor" | ||
torch.testing.assert_close(out_query.cpu(), | ||
ref_query, | ||
atol=1e-2, | ||
rtol=1e-2) | ||
torch.testing.assert_close(out_key.cpu(), ref_key, atol=1e-2, rtol=1e-2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters