Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix/revert numpydoc docstrings #744

Merged
merged 2 commits into from
Jan 18, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 25 additions & 17 deletions darts/utils/statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -502,28 +502,32 @@ def plot_acf(
) -> None:
"""
Plots the ACF of `ts`, highlighting it at lag `m`, with corresponding significance interval.
This function uses the `Statsmodels module <https://github.com/statsmodels/statsmodels>`_.
Uses :func:`statsmodels.tsa.stattools.acf` [1]_

Parameters
----------
ts : TimeSeries
ts
The TimeSeries whose ACF should be plotted.
m : int, optional
m
Optionally, a time lag to highlight on the plot.
max_lag : int, default: 24
max_lag
The maximal lag order to consider.
alpha : float, default: 0.05
alpha
The confidence interval to display.
bartlett_confint : bool, default: True
bartlett_confint
The boolean value indicating whether the confidence interval should be
calculated using Bartlett's formula. If set to True, the confidence interval
can be used in the model identification stage for fitting ARIMA models.
If set to False, the confidence interval can be used to test for randomness
(i.e. there is no time dependence in the data) of the data.
fig_size : tuple of int, default: (10, 5)
fig_size
The size of the figure to be displayed.
axis : plt.axis, optional
axis
Optionally, an axis object to plot the ACF on.

References
----------
.. [1] https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.acf.html
"""

ts._assert_univariate()
Expand Down Expand Up @@ -584,17 +588,17 @@ def plot_pacf(
) -> None:
"""
Plots the Partial ACF of `ts`, highlighting it at lag `m`, with corresponding significance interval.
This function uses the `Statsmodels module <https://github.com/statsmodels/statsmodels>`_.
Uses :func:`statsmodels.tsa.stattools.pacf` [1]_

Parameters
----------
ts : TimeSeries
ts
The TimeSeries whose ACF should be plotted.
m : int, optional
m
Optionally, a time lag to highlight on the plot.
max_lag : int, default: 24
max_lag
The maximal lag order to consider.
method : str, default: "ywadjusted"
method
The method to be used for the PACF calculation.
- | "yw" or "ywadjusted" : Yule-Walker with sample-size adjustment in
| denominator for acovf. Default.
Expand All @@ -608,12 +612,16 @@ def plot_pacf(
correction.
- "ldb" or "ldbiased" : Levinson-Durbin recursion without bias
correction.
alpha : float, default: 0.05
alpha
The confidence interval to display.
fig_size : tuple of int, default: (10, 5)
fig_size
The size of the figure to be displayed.
axis : plt.axis, optional
axis
Optionally, an axis object to plot the ACF on.

References
----------
.. [1] https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.pacf.html
"""

ts._assert_univariate()
Expand Down Expand Up @@ -759,7 +767,7 @@ def plot_residuals_analysis(
Univariate TimeSeries instance representing residuals.
num_bins
Optionally, an integer value determining the number of bins in the histogram.
fill_nan:
fill_nan
A boolean value indicating whether NaN values should be filled in the residuals.
"""

Expand Down
14 changes: 7 additions & 7 deletions darts/utils/timeseries_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -378,26 +378,26 @@ def autoregressive_timeseries(

Parameters
----------
coef : list of float
coef
The autoregressive coefficients used for calculating the next time step.
series[t] = coef[-1] * series[t-1] + coef[-2] * series[t-2] + ... + coef[0] * series[t-len(coef)]
start_values : list of float, default: np.ones(len(coef))
start_values
The starting values used for calculating the first few values for which no lags exist yet.
series[0] = coef[-1] * starting_values[-1] + coef[-2] * starting_values[-2] + ... + coef[0] * starting_values[0]
start : pd.Timestamp or int, default: pd.Timestamp('2000-01-01')
start
The start of the returned TimeSeries' index. If a pandas Timestamp is passed, the TimeSeries will have a pandas
DatetimeIndex. If an integer is passed, the TimeSeries will have a pandas Int64Index index. Works only with
either `length` or `end`.
end : pd.Timestamp or int, optional
end
Optionally, the end of the returned index. Works only with either `start` or `length`. If `start` is
set, `end` must be of same type as `start`. Else, it can be either a pandas Timestamp or an integer.
length : int, optional
length
Optionally, the length of the returned index. Works only with either `start` or `end`.
freq : str, default: 'D'
freq
The time difference between two adjacent entries in the returned TimeSeries. Only effective if `start` is a
pandas Timestamp. A DateOffset alias is expected; see
`docs <https://pandas.pydata.org/pandas-docs/stable/user_guide/TimeSeries.html#dateoffset-objects>`_.
column_name : str, default: 'autoregressive'
column_name
Optionally, the name of the value column for the returned TimeSeries

Returns
Expand Down