Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add tests/docs for Pinned Memory metrics #6754

Merged
merged 16 commits into from
Jan 12, 2024
Merged
Show file tree
Hide file tree
Changes from 13 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions docs/user_guide/metrics.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@ To change the interval at which metrics are polled/updated, see the `--metrics-i
- [Inference Request Metrics](#inference-request-metrics)
- [GPU Metrics](#gpu-metrics)
- [CPU Metrics](#cpu-metrics)
- [Pinned Memory Metrics](#pinned-memory-metrics)
- [Response Cache Metrics](#response-cache-metrics)
- [Custom Metrics](#custom-metrics)

Expand Down Expand Up @@ -282,6 +283,15 @@ If building Triton locally, the `TRITON_ENABLE_METRICS_CPU` CMake build flag can
|CPU Memory | CPU Total Memory | `nv_cpu_memory_total_bytes` | Total CPU memory (RAM), in bytes | System-wide | Per interval |
| | CPU Used Memory | `nv_cpu_memory_used_bytes` | Used CPU memory (RAM), in bytes | System-wide | Per interval |

## Pinned Memory Metrics

Starting in 24.01, Triton offers Pinned Memory metrics to monitor the utilization of the Pinned Memory pool.

|Category |Metric |Metric Name |Description |Granularity|Frequency |
|----------------|------------------|----------------------------|-------------------------------------------------------|-----------|-------------|
|Pinned Memory |Total Pinned memory |`nv_pinned_memory_pool_total_bytes` |Total Pinned memory, in bytes |All models |Per interval |
| |Used Pinned memory |`nv_pinned_memory_pool_used_bytes` |Used Pinned memory, in bytes |All models |Per interval |

## Response Cache Metrics

Cache metrics can be reported in two ways:
Expand Down
9 changes: 9 additions & 0 deletions qa/L0_metrics/metrics_config_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,10 @@
"nv_cache_hit_duration_per_model",
"nv_cache_miss_duration_per_model",
]
PINNED_MEMORY_PATTERNS = [
"nv_pinned_memory_pool_total_bytes",
"nv_pinned_memory_pool_used_bytes",
]
CACHE_SUMMARY_PATTERNS = ["nv_cache_hit_summary", "nv_cache_miss_summary"]


Expand All @@ -65,6 +69,11 @@ def _get_metrics(self):
r.raise_for_status()
return r.text

def test_pinned_memory_metrics_exist(self):
metrics = self._get_metrics()
for metric in PINNED_MEMORY_PATTERNS:
self.assertIn(metric, metrics)

# Counters
def test_inf_counters_exist(self):
metrics = self._get_metrics()
Expand Down
177 changes: 177 additions & 0 deletions qa/L0_metrics/pinned_memory_metrics_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
#!/bin/bash
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import os
import re
import threading
import time
import unittest

import numpy as np
import requests
import tritonclient.http as httpclient
from tritonclient.utils import *

custom_pinned_memory_pool_size = os.environ.get("CUSTOM_PINNED_MEMORY_POOL_SIZE")
if custom_pinned_memory_pool_size is not None:
TOTAL_PINNED_MEMORY_SIZE = int(custom_pinned_memory_pool_size)
else:
# Triton server reserves 256 MB for pinned memory by default.
TOTAL_PINNED_MEMORY_SIZE = 2**28 # bytes, Equivalent to 256 MB
print(f"TOTAL_PINNED_MEMORY_SIZE: {TOTAL_PINNED_MEMORY_SIZE} bytes")

# Pinned memory usage when server is idle (no inference)
DEFAULT_USED_PINNED_MEMORY_SIZE = 0 # bytes


total_bytes_pattern = re.compile(r"pool_total_bytes (\d+)")
used_bytes_pattern = re.compile(r"pool_used_bytes (\d+)")


def _get_metrics():
r = requests.get("http://localhost:8002/metrics")
r.raise_for_status()

total_bytes_match = total_bytes_pattern.search(r.text)
total_bytes_value = total_bytes_match.group(1)

used_bytes_match = used_bytes_pattern.search(r.text)
used_bytes_value = used_bytes_match.group(1)

return total_bytes_value, used_bytes_value


class TestPinnedMemoryMetrics(unittest.TestCase):
def setUp(self):
self.inference_completed = threading.Event()

shape = [1, 16]
self.model_name = "libtorch_float32_float32_float32"
input0_data = np.random.rand(*shape).astype(np.float32)
input1_data = np.random.rand(*shape).astype(np.float32)

self.inputs = [
httpclient.InferInput(
"INPUT0", input0_data.shape, "FP32"
).set_data_from_numpy(input0_data),
httpclient.InferInput(
"INPUT1", input1_data.shape, "FP32"
).set_data_from_numpy(input1_data),
]

self.outputs = [
httpclient.InferRequestedOutput("OUTPUT__0"),
httpclient.InferRequestedOutput("OUTPUT__1"),
]

# Before loading the model
self._assert_pinned_memory_utilization()

def _assert_pinned_memory_utilization(self):
total_bytes_value, used_bytes_value = _get_metrics()
self.assertEqual(int(total_bytes_value), TOTAL_PINNED_MEMORY_SIZE)
self.assertEqual(int(used_bytes_value), DEFAULT_USED_PINNED_MEMORY_SIZE)

def _collect_metrics(self):
while not self.inference_completed.is_set():
total_bytes_value, used_bytes_value = _get_metrics()
self.assertEqual(int(total_bytes_value), TOTAL_PINNED_MEMORY_SIZE)
# Assert pinned memory usage is within anticipated values
self.assertIn(int(used_bytes_value), [0, 64, 128, 192, 256])

def test_pinned_memory_metrics_asynchronous_requests(self):
with httpclient.InferenceServerClient(
url="localhost:8000", concurrency=10
) as client:
if not client.is_model_ready(self.model_name):
client.load_model(self.model_name)

# Before starting the inference
self._assert_pinned_memory_utilization()

# Start a thread to collect metrics asynchronously
metrics_thread = threading.Thread(target=self._collect_metrics)
metrics_thread.start()

# Asynchronous inference requests
async_requests = []
for _ in range(100):
async_requests.append(
client.async_infer(
model_name=self.model_name,
inputs=self.inputs,
outputs=self.outputs,
)
)

time.sleep(1)

# Set the event to indicate that inference is completed
self.inference_completed.set()

# Wait for all inference requests to complete
for async_request in async_requests:
async_request.get_result()

# Wait for the metrics thread to complete
metrics_thread.join()

# After Completing inference, used_bytes_value should comedown to 0
self._assert_pinned_memory_utilization()

def test_pinned_memory_metrics_synchronous_requests(self):
with httpclient.InferenceServerClient(url="localhost:8000") as client:
if not client.is_model_ready(self.model_name):
client.load_model(self.model_name)

# Before starting the inference
self._assert_pinned_memory_utilization()

# Start a thread to collect metrics asynchronously
metrics_thread = threading.Thread(target=self._collect_metrics)
metrics_thread.start()

# Synchronous inference requests
for _ in range(100):
response = client.infer(
model_name=self.model_name, inputs=self.inputs, outputs=self.outputs
)

response.get_response()

# Set the event to indicate that inference is completed
self.inference_completed.set()

# Wait for the metrics thread to complete
metrics_thread.join()

# After Completing inference, used_bytes_value should comedown to 0
self._assert_pinned_memory_utilization()


if __name__ == "__main__":
unittest.main()
39 changes: 35 additions & 4 deletions qa/L0_metrics/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -45,12 +45,13 @@ SERVER=${TRITON_DIR}/bin/tritonserver
BASE_SERVER_ARGS="--model-repository=${MODELDIR}"
SERVER_ARGS="${BASE_SERVER_ARGS}"
SERVER_LOG="./inference_server.log"
PYTHON_TEST="metrics_config_test.py"
source ../common/util.sh

CLIENT_LOG="client.log"
TEST_RESULT_FILE="test_results.txt"
function check_unit_test() {
if [ $? -ne 0 ]; then
if [ "${PIPESTATUS[0]}" -ne 0 ]; then
cat $CLIENT_LOG
echo -e "\n***\n*** Test Failed\n***"
RET=1
Expand Down Expand Up @@ -100,8 +101,6 @@ if [ $? -ne 0 ]; then
fi
set -e

### GPU Metrics

# Prepare a libtorch float32 model with basic config
rm -rf $MODELDIR
model=libtorch_float32_float32_float32
Expand All @@ -112,8 +111,41 @@ mkdir -p $MODELDIR/${model}/1 && \
sed -i "s/label_filename:.*//" config.pbtxt && \
echo "instance_group [{ kind: KIND_GPU }]" >> config.pbtxt)

### Pinned memory metrics tests
set +e
CLIENT_PY="./pinned_memory_metrics_test.py"
SERVER_LOG="pinned_memory_metrics_test_server.log"
SERVER_ARGS="$BASE_SERVER_ARGS --metrics-interval-ms=1 --model-control-mode=explicit --log-verbose=1"
run_and_check_server
python3 ${PYTHON_TEST} MetricsConfigTest.test_pinned_memory_metrics_exist -v 2>&1 | tee ${CLIENT_LOG}
check_unit_test

CLIENT_LOG="pinned_memory_metrics_test_client.log"
python3 ${CLIENT_PY} -v 2>&1 | tee ${CLIENT_LOG}
check_unit_test

kill $SERVER_PID
wait $SERVER_PID

# Custom Pinned memory pool size
export CUSTOM_PINNED_MEMORY_POOL_SIZE=1024 # bytes
SERVER_LOG="custom_pinned_memory_test_server.log"
CLIENT_LOG="custom_pinned_memory_test_client.log"
SERVER_ARGS="$BASE_SERVER_ARGS --metrics-interval-ms=1 --model-control-mode=explicit --log-verbose=1 --pinned-memory-pool-byte-size=$CUSTOM_PINNED_MEMORY_POOL_SIZE"
run_and_check_server
python3 ${CLIENT_PY} -v 2>&1 | tee ${CLIENT_LOG}
check_unit_test

kill $SERVER_PID
wait $SERVER_PID
set -e


### GPU Metrics
set +e
export CUDA_VISIBLE_DEVICES=0,1,2
SERVER_LOG="./inference_server.log"
CLIENT_LOG="client.log"
run_and_check_server

num_gpus=`curl -s localhost:8002/metrics | grep "nv_gpu_utilization{" | wc -l`
Expand Down Expand Up @@ -227,7 +259,6 @@ MODELDIR="${PWD}/unit_test_models"
mkdir -p "${MODELDIR}/identity_cache_on/1"
mkdir -p "${MODELDIR}/identity_cache_off/1"
BASE_SERVER_ARGS="--model-repository=${MODELDIR} --model-control-mode=explicit"
PYTHON_TEST="metrics_config_test.py"

# Check default settings: Counters should be enabled, summaries should be disabled
SERVER_ARGS="${BASE_SERVER_ARGS} --load-model=identity_cache_off"
Expand Down
Loading