-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
How to transform the parameters? #28
Comments
As I look at the problem again, or I may define the callable as this function (problem::REProblem)(θ)
@unpack data, λ = problem
@unpack ρ_z, σ_μ, γᴵ, γᴰ, γᶠ, γˢ = θ
@unpack a₁, a₂, a₃, a₄, b₁, b₂, b₃, b₄, Φˣ = θ
return LogLikelihood(data, θ) + LogPriorProbability(θ, λ)
end Then use the transformation above. Or you may have better suggestions? Thanks again. |
After learning from your model here, I redefine the callable this way function (problem:: REProblem)(θ)
@unpack data, ie, λ = problem # extract the data and priors
@unpack ρ_z, σ_μ, γᴵ, γᴰ, γᶠ, γˢ = θ # extract the dynamic parameters (part 1)
@unpack a₀, a₁, a₂, a₃, b₀, b₁, b₂, b₃, Φˣ = θ # extract the dynamic parameters (part 2)
Θ = DynamicParameters(ρ_z,σ_μ,γᴵ,γᴰ,γᶠ,γˢ,a₀,a₁,a₂,a₃,b₀,b₁,b₂,b₃,Φˣ)
return LogLikelihood(data, Θ, ie) + LogPriorProbability(Θ, λ)
end And my problem definition has changed a little (adding one component) struct REProblem{Td, Ti, Tλ}
"data of the model"
data::Td
"intergration elements need for calculation the likelihood"
ie::Ti
"prior of the model"
λ::Tλ
end Then I forward like this way # define a model using data and priors
p = RdExpProductivity(rdexp_data, ie, prior)
# transform variables
trans = as((ρ_z=as𝕀, σ_μ=asℝ, γᴵ=asℝ, γᴰ=asℝ, γᶠ=asℝ, γˢ=asℝ,
a₀=asℝ, a₁=asℝ, a₂=asℝ, a₃=asℝ,
b₀=asℝ, b₁=asℝ, b₂=asℝ, b₃=asℝ, Φˣ=asℝ))
# transformed probability
tP = TransformedLogDensity(trans, p)
# use ForwardDiff for automatic differentiation (AD)
∇tP = ADgradient(:ForwardDiff, tP) I tried to evaluate the callable p((ρ_z=.76, σ_μ=-.21, γᴵ=70.0, γᴰ=380.0, γᶠ=10.0, γˢ=50.0, a₀=-4.0059, a₁=1.9955, a₂=0.1724,
a₃=0.2710, b₀=-5.4041, b₁=2.2519, b₂=0.1270, b₃=0.3305, Φˣ=3.80))
-5974.952402085821 Then I ran my HMC # sampling using Dynamic Hamiltonian Monte Carlo, random stating point.
results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇tP, 1_000) but got the following error ERROR: MethodError: no method matching DynamicParameters(::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}, ::ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8})
Stacktrace:
[1] (::RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}})(::NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8}}}) at /Users/jack/Programming/rdexp_hmc/code/mcmc_hamiltonian.jl:30
[2] transform_logdensity(::TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}}, ::RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}, ::Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}) at /Users/jack/.julia/packages/TransformVariables/eSbzF/src/generic.jl:166
[3] logdensity(::TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}, ::Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}) at /Users/jack/.julia/packages/LogDensityProblems/7AvD8/src/LogDensityProblems.jl:168
[4] (::LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}})(::Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}) at /Users/jack/.julia/packages/LogDensityProblems/7AvD8/src/AD_ForwardDiff.jl:21
[5] chunk_mode_gradient!(::DiffResults.MutableDiffResult{1,Float64,Tuple{Array{Float64,1}}}, ::LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}}, ::Array{Float64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}) at /Users/jack/.julia/packages/ForwardDiff/cXTw0/src/gradient.jl:140
[6] gradient!(::DiffResults.MutableDiffResult{1,Float64,Tuple{Array{Float64,1}}}, ::LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}}, ::Array{Float64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}, ::Val{true}) at /Users/jack/.julia/packages/ForwardDiff/cXTw0/src/gradient.jl:37
[7] gradient!(::DiffResults.MutableDiffResult{1,Float64,Tuple{Array{Float64,1}}}, ::LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}}, ::Array{Float64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}) at /Users/jack/.julia/packages/ForwardDiff/cXTw0/src/gradient.jl:33
[8] logdensity_and_gradient(::LogDensityProblems.ForwardDiffLogDensity{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}},ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}}, ::Array{Float64,1}) at /Users/jack/.julia/packages/LogDensityProblems/7AvD8/src/AD_ForwardDiff.jl:51
[9] evaluate_ℓ(::LogDensityProblems.ForwardDiffLogDensity{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}},ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}}, ::Array{Float64,1}) at /Users/jack/.julia/packages/DynamicHMC/10IZC/src/hamiltonian.jl:193
[10] initialize_warmup_state(::Random._GLOBAL_RNG, ::LogDensityProblems.ForwardDiffLogDensity{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}},ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}}; q::Array{Float64,1}, κ::GaussianKineticEnergy{Diagonal{Float64,Array{Float64,1}},Diagonal{Float64,Array{Float64,1}}}, ϵ::Nothing) at /Users/jack/.julia/packages/DynamicHMC/10IZC/src/mcmc.jl:109
[11] initialize_warmup_state(::Random._GLOBAL_RNG, ::LogDensityProblems.ForwardDiffLogDensity{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}},ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}}) at /Users/jack/.julia/packages/DynamicHMC/10IZC/src/mcmc.jl:109
[12] mcmc_keep_warmup(::Random._GLOBAL_RNG, ::LogDensityProblems.ForwardDiffLogDensity{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}},ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}}, ::Int64; initialization::Tuple{}, warmup_stages::Tuple{FindLocalOptimum{Float64},InitialStepsizeSearch,TuningNUTS{Nothing,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Nothing,DualAveraging{Float64}}}, algorithm::DynamicHMC.NUTS{Val{:generalized}}, reporter::LogProgressReport{Nothing}) at /Users/jack/.julia/packages/DynamicHMC/10IZC/src/mcmc.jl:518
[13] macro expansion at /Users/jack/.julia/packages/UnPack/7uwKF/src/UnPack.jl:100 [inlined]
[14] mcmc_with_warmup(::Random._GLOBAL_RNG, ::LogDensityProblems.ForwardDiffLogDensity{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}},ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}}, ::Int64; initialization::Tuple{}, warmup_stages::Tuple{FindLocalOptimum{Float64},InitialStepsizeSearch,TuningNUTS{Nothing,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Diagonal,DualAveraging{Float64}},TuningNUTS{Nothing,DualAveraging{Float64}}}, algorithm::DynamicHMC.NUTS{Val{:generalized}}, reporter::LogProgressReport{Nothing}) at /Users/jack/.julia/packages/DynamicHMC/10IZC/src/mcmc.jl:577
[15] mcmc_with_warmup(::Random._GLOBAL_RNG, ::LogDensityProblems.ForwardDiffLogDensity{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}},ForwardDiff.GradientConfig{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8,Array{ForwardDiff.Dual{ForwardDiff.Tag{LogDensityProblems.var"#34#35"{TransformedLogDensity{TransformVariables.TransformTuple{NamedTuple{(:ρ_z, :σ_μ, :γᴵ, :γᴰ, :γᶠ, :γˢ, :a₀, :a₁, :a₂, :a₃, :b₀, :b₁, :b₂, :b₃, :Φˣ),NTuple{15,TransformVariables.Identity}}},RdExpProductivity{RdExpData{Float64,Int64},IntegrationElements{Float64},Priors{Float64}}}},Float64},Float64,8},1}}}, ::Int64) at /Users/jack/.julia/packages/DynamicHMC/10IZC/src/mcmc.jl:577
[16] top-level scope at none:0 Can you please help me look at the error and give me some suggestions? |
Hi @tpapp , I just wonder if you would mind taking a look at this when you have time. This following one runs smothly using TransformVariables, LogDensityProblems, DynamicHMC, DynamicHMC.Diagnostics
using MCMCDiagnostics
using Parameters, Statistics, Random, Distributions, StatsFuns
import ForwardDiff
struct LinearRegProblem{Ty<:AbstractVector,TX<:AbstractMatrix,Tv<:Real}
y::Ty
X::TX
v::Tv
end
function (problem::LinearRegProblem)(θ)
@unpack y, X, v = problem
@unpack β₀, β₁, σ = θ
@info β₀, β₁, σ
return LogLikelihood(y, X, β₀, β₁, σ) + LogPriorProbability(v, σ)
end
function LogLikelihood(y, X, β₀, β₁, σ)
return loglikelihood(Normal(0,σ), y.-X*[β₀, β₁])
end
function LogPriorProbability(v, σ)
return logpdf(TDist(v), σ)
end
N = 2000
X = hcat(ones(N), randn(N,1))
β₀ = 1.8
β₁ = 2.5
σ = .5
y = X*[β₀, β₁] .+ randn(N).*σ
p = LinearRegProblem(y, X, 1.0)
p((β₀=β₀, β₁=β₁, σ=σ))
trans = as((β₀=asℝ, β₁=asℝ, σ=asℝ₊))
tP = TransformedLogDensity(trans, p)
∇P = ADgradient(:ForwardDiff, tP);
results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000)
posterior = transform.(trans, results.chain)
post_β₁ = mean(first, posterior)
post_σ = mean(last, posterior) This one will give the error using TransformVariables, LogDensityProblems, DynamicHMC, DynamicHMC.Diagnostics
using MCMCDiagnostics
using Parameters, Statistics, Random, Distributions, StatsFuns
import ForwardDiff
@with_kw struct DynamicParameters{F<:AbstractFloat} @deftype F
β₀
β₁
σ
end
struct LinearRegProblem{Ty<:AbstractVector,TX<:AbstractMatrix,Tv<:Real}
y::Ty
X::TX
v::Tv
end
function (problem::LinearRegProblem)(θ)
@unpack y, X, v = problem
@unpack β₀, β₁, σ = θ
@info β₀, β₁, σ
Θ = DynamicParameters(β₀=β₀, β₁=β₁, σ=σ)
@info Θ
return LogLikelihood(y, X, Θ) + LogPriorProbability(v, Θ)
end
function LogLikelihood(y, X, Θ::DynamicParameters)
@unpack β₀, β₁, σ = Θ
return loglikelihood(Normal(0,σ), y.-X*[β₀, β₁])
end
function LogPriorProbability(v, Θ::DynamicParameters)
@unpack σ = Θ
return logpdf(TDist(v), σ)
end
N = 2000
X = hcat(ones(N), randn(N,1))
β₀ = 1.8
β₁ = 2.5
σ = .5
y = X*[β₀, β₁] .+ randn(N).*σ
p = LinearRegProblem(y, X, 1.0)
p((β₀=β₀, β₁=β₁, σ=σ))
trans = as((β₀=asℝ, β₁=asℝ, σ=asℝ₊))
tP = TransformedLogDensity(trans, p)
∇P = ADgradient(:ForwardDiff, tP);
results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000) The difference is that in the second one I wrapped up Thanks a lot for your help, |
There are multiple things going on here:
Most of these issues are not specific to DynamicHMC BTW, just general Julia code organization questions (I am happy to help though). Are you just learning Julia? |
Thanks a lot for your suggestions. That's extremely helpful. I will follow your advice to solve the problem. To be honest, I just started programming in Julia for a few weeks. Not to seek for excuses, as you know for a large portion of economics people, I used to program in Stata (if that's programming) and some Python, but I like Julia a lot and plan to use it as my main programming language looking forward. I thought it may be a good way to be familiar with Julia by solving my estimation problem through learning by doing. And I mostly learn from others' programs and search google when encountering some new to me. I guess I need to study more thoroughly the Julia manual. But maybe the Julia manual is a little bit too detailed for the beginner. Do you have something to recommend to enhance my Julia programming skills? Thanks. Best regards, |
I think you are actually doing fine; as you have figured out a lot of things. Just give it time. IMO the best source is the manual, and reading code from others; eg hanging around on Discourse and reading/contributing. |
Great. I found Discourse a great place for constructive discussions but I generally read. Thanks. Have a great weekend. |
By the way, I also want to contribute someway, please feel free to let me know if there is something I could help here related to DynamicHMC or somewhere else generally in Julia community. |
Hi Tamas,
Sorry to trouble you again. I am working on a problem that is defined this way
Right now I define the callable as the following
where the function
LogLikelihood
takes the data andΘ
to calculate the log likelihood in a somewhat complicate process. And I also wrap up the calculation of prior probability intoLogPriorProbability
.Since I have a lot of parameters to be estimated, I wrap up all the parameters as a struct
and
Θ
is an instance ofDynamicParameters
.I wonder how can I transform the parameters in this model?
Or I could define the callable as this more expanded way
Then, I could transform the parameters as
But I really want to define the callable in a more compact way, can you please give me some suggestions? Thanks a lot for your help.
The text was updated successfully, but these errors were encountered: